

System LSI education strategy at Waseda University

Jan. 26, 2004

Takeshi Ikenaga

The Graduate School of Information,
Production and Systems
Waseda University

Introduction of the Grad. School of IPS Waseda University

- System LSI educational curriculum
 - Regular and invited lectures
- Subject: "System LSI design"
 - Actual LSI through lectures and exercises

 Introduction of the Grad. School of IPS Waseda University

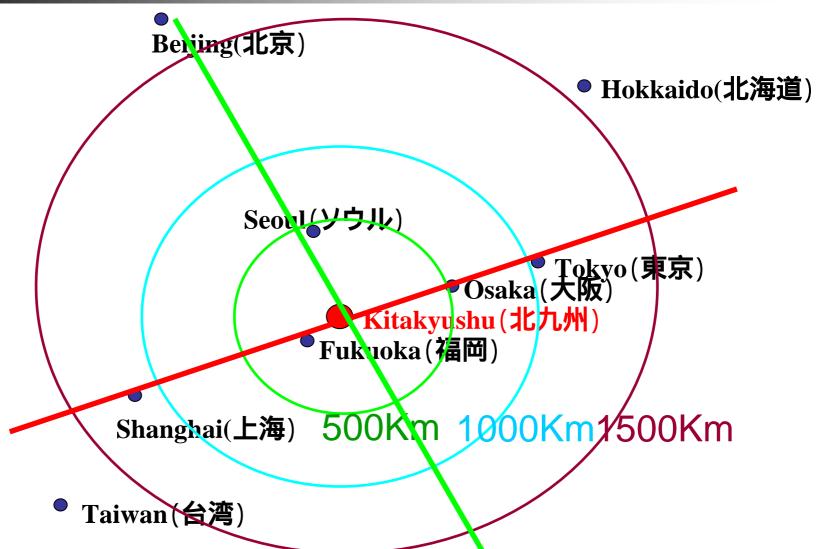
- System LSI educational curriculum
 - Regular and invited lectures
- Subject: "System LSI design"
 - Actual LSI through lectures and exercises

Graduate School of Information, Production and Systems (IPS)

Current status

31 professors / associate professors

181 master's or doctoral course students


- 55 students are from overseas and 53 students belong to Ph. D course -

Page. 4

Why Waseda in Kitakyushu?

Three program fields

Information Architecture Field

This field covers the various application of information technology including information representation means through multimedia, information processing means focused on its algorithms, networks for transmitting and processing information, and applications of information process into business management.

Production systems utilizing information technology toward 21st century style Information

Architecture

Hardware supporting information technology

Production Systems Field

This field encompasses 21st century oriented production systems that incorporate information technology and covers process engineering and FA system engineering as well as measurement and control engineering being recognized as An example of an important common technology, and the issue of energy engineering as infrastructure research.

Production Systems

System LSI

production system in the 21st century

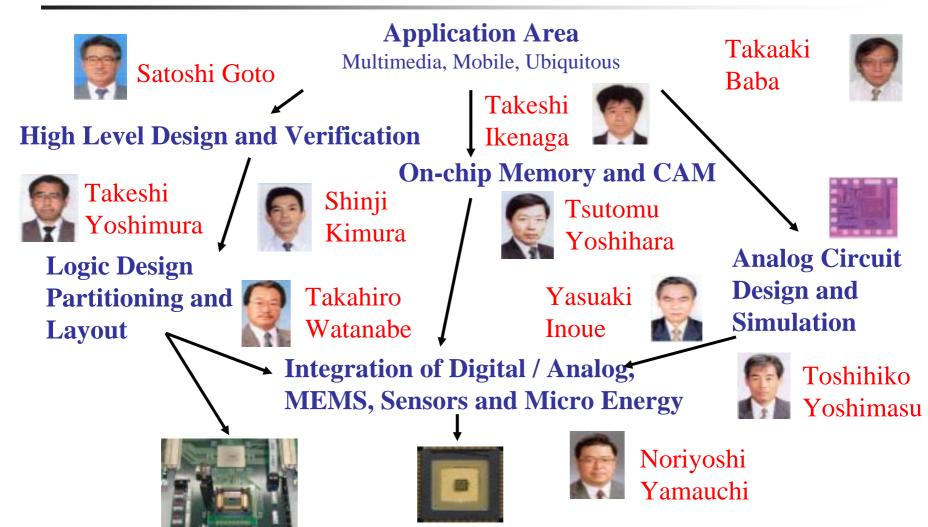
System LSI Field

This fields covers system LSI design; an essential hardware means for supporting the progress of information technology. System LSI applications and its design and verification methodologies are key subjects.

System LSI field

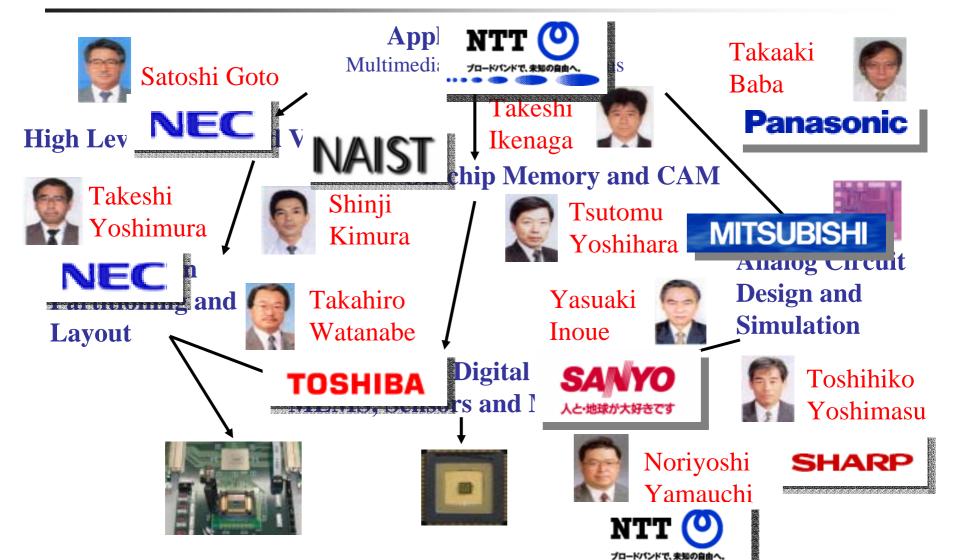
Advanced education and research for System LSI

Largest and best stuffs in System LSI in Japan. Most of all professors have industry background and experience in System LSI.


10 professors cover almost all area of system LSI

- Vision: Market research and product design
- Strategy: Architecture design and implementation
- Design: Methodologies and design tools
- Tactics: Verification, test and marketing strategy

Faculties and research area



Background of faculties

Introduction of the Grad. School of IPS Waseda University

- System LSI educational curriculum
 - Regular and invited lectures
- Subject: "System LSI design"
 - Actual LSI through lectures and exercises

Features of curriculums

Regular and invited lectures

- Regular lectures (fundamental and advanced subjects) are taught by 10 faculties of IPS and Prof. Ohtsuki (School of Science and Engineering)
- Invited lectures are taught by guest professors (oversea/domestic) and leading-edge company's researchers. MEXT invests \$5.0 M to Waseda University to run invited lectures (and to support graduate students financially).

Theoretical and practical education

- Algorithm, architecture and software
- Voice, motion picture and ubiquitous applications
- Actual LSI chip design and manufacturing

Fundamental subjects

Digital Signal Processing	E	Baba	Introduction System LSI	Goto
Analog Circuits	E	Yoshimasu	Introduction Semiconductor ^J	Yoshihara
Computer Architecture	Е	Watanabe	Software Engineering	Yoshimura
Digital Circuits	J	Kimura		
Numerical Analysis	E	Inoue		

: Fall : Spring E: English J: Japanese

One subject: 12-15 lectures with one hour and a half

Advanced subjects

Digital LSI architecture	Е	Watanabe	System LSI architecture	Е	Kimura
Digital LSI design	E	Yamauchi	System LSI design	E	Ilkenaga
Multimedia LSI	J	Goto	Algorithm Design	Е	Goto
Layout design	E	Yoshimura	Wireless Communication	E	Baba
Product design	J	Yoshihara	Communication network	J	Yamauchi
Interface design	J	Baba	On chip memory	E	Yoshihara
Micro Machine	E	Yamauchi	Transmission circuits	J	Yoshimasu
High frequency circuits	E	Yoshimasu	System LSI Software	J	Yoshimura
Design for testability	J	Kimura	Low Power LSI Design	J	Watanabe
LSI simulation	J	Inoue	Analog LSI design	Е	Inoue
			Digital Integrated Circuits	J	Ohtsuki

: Fall : Spring E: English J: Japanese

One subject: 12-15 lectures with one hour and a half

Invited lectures (oversea)

- Prof. Chong-Min Kyung* (KAIST)
 - Current Status and Challenges of SoC
 Verification for Embedded Systems Market
- Prof. Ernest S. Kuh (UCB)
 - Circuit Simulation Past, Present and Future
- Prof. C. L. Liu* (National Tsing Hua Univ.)
 - Optimization algorithm
 - Computer-aided design of VLSI circuits

* Guest professor of Waseda University

Invited lectures (domestic)

- Prof. Nozomu Togawa* (Univ. kitakyushu): Dedicated processor design
- Dr. Junji Namiki* (NEC): Technology trend of networking and network processor
- Dr. Masao Nakaya* (Renesas): SoC design methodology
- Dr. Takashi Mitsuhashi* (Toshiba): EDA technology
- Dr. Kazutoshi Wakabayashi (NEC): LSI design from C language
- Dr. Ichiro Kuroda (NEC): Video/Media Processing LSI
- Dr. Toshihiro Hattori (Super H Japan): Embedded Microprocessor
- Dr. Yukiyasu Tsunoo (NEC): Symmetric Key Cipher
- Dr. Kazuhiko Takamizawa (NEC electronics): DFT
- Dr. Masato Edahiro (NEC): On-chip Multiprocessor

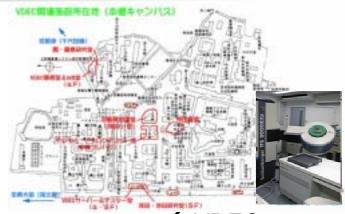
* Guest professor of Waseda University

Introduction of the Grad. School of IPS Waseda University

- System LSI educational curriculum
 - Regular and invited lectures
- Subject: "System LSI design"
 - Actual LSI through lectures and exercises

Purpose of the subject

Master's course students of system LSI field are expected to design and fabricate two actual LSIs at least: one in education and the other through research.


"System LSI design": An actual LSI is designed through lectures and exercises. It's indispensable to master various system LSI technologies deeply.

Design environment

- 33 PCs and 5 Workstations
- EDA tools (Synopsis, Cadence)
- FPGA evaluation boards
- ASIC Fabrication: VDEC (VLSI design education center)

VDEC

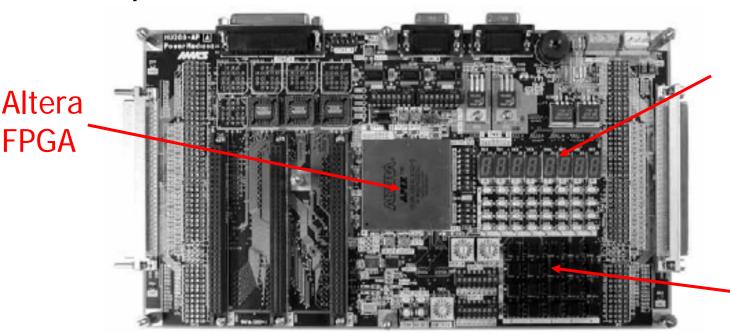
System LSI laboratory

Syllabus (first half)

Top down LSI design methodology

 Hardware description language (Verilog HDL),
 Functional simulation (VCS), Logic synthesis (Design Compiler), Layout (Milkyway/Applo) and design rule check (Dracula)

Modeling and Simulation


- Combinational Circuits: Multiplexer/Selector, Encoder, Decoder, Priority encode, Comparator, Adder and ALU (Arithmetic Logic Unit)
- Sequential Circuits: Register file, Counter, Linear
 Feedback Shift Register and FSM (Finite state machine)

Project #1

- Design target: electric calculator
 - A simple but useful digital system
 - Can learn system design concept and I/O
- Implementation: FPGA board

7 segment LED x 8

Input ten key x 32

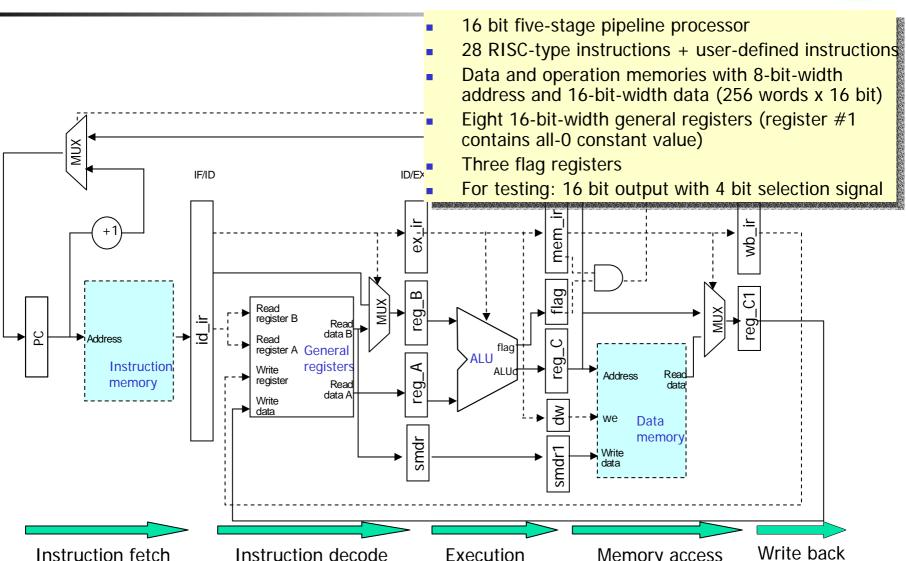
Result of project #1

Students define a specification of a calculator by themselves and implement it onto the FPGA board.

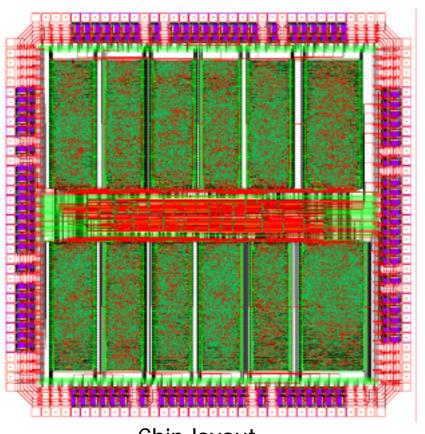
	given	attained
Digit	2 (-99 to 99)	3,, 7 or 8(-9999999 ~99999999)
Number	Integer	Floating point or fixed point decimal fraction
Operator	+,-	*, /, X^2, 2*X, +/-
Function	CE	Clear, MC, MR, MS, M+, "Error" display

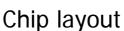
Project #2

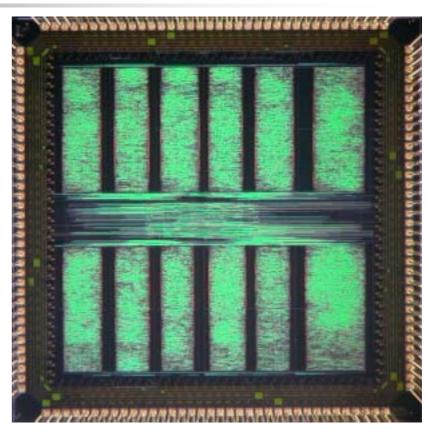
- Design target: embedded pipeline processor (MIPS-based 16-bit processor)
 - The most important element in system LSI
 - Can learn hardware, software and their interface
- Implementation: ASIC chip through VDEC
- Linked with "System LSI architecture" and an open seminar on computer architecture.



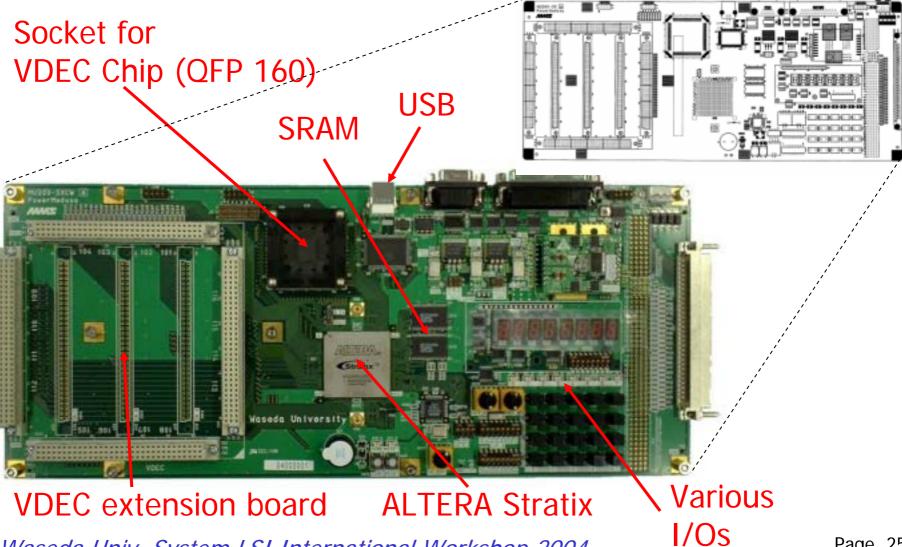
Specification of processor







Result of project #2


Micrograph of the chip

12 processors in VDEC 0.35 µ m 4.9mm²

Chip evaluation

Waseda Univ. System LSI International Workshop 2004

Page. 25

From education to research

Programmable		Embedded Processor (e.g. ARM, MIPS,TX, VR,SH,M32R) Sensor interface			
	Software	Re-Configurable Xtensa, Processor MeP, Quick Logic Image Elixent			
	Hardware	Static FPG/(e.g.Xilinx,Altera) Wireless Dynamic DRP, Quick silver, IPFlex	ioı		
Non- Programmable	Long TAT	CBIC			
		ISSP, RapidChip,GA			

CryptographySoC classification by Prof. GOTO

- Grad. School of IPS Waseda University
 - IPS offers unique education and research environment in System LSI
- System LSI educational curriculum
 - Regular and invited lectures cover system LSI technologies widely and deeply.
- "System LSI design"
 - Experience of designing an actual LSI make a significant contribution to research.