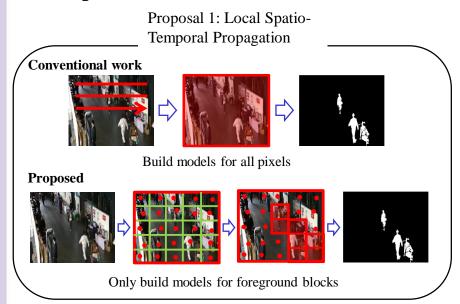
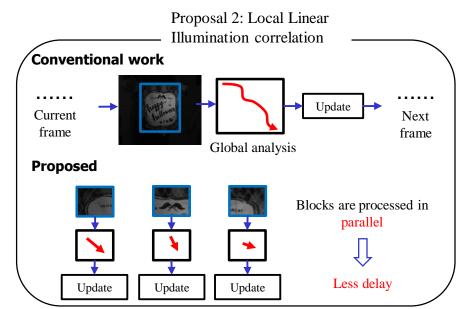
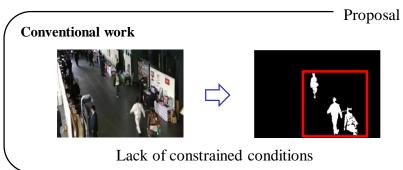
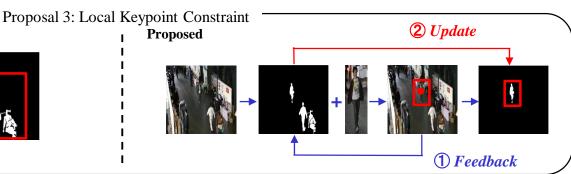
Local Spatio-Temporal Propagation and Constraint Based Model Generation for 1ms Foreground Detection System 修士課程卒業 CAI PEIKUN


Background


- Key for human-machine interaction applications
 - Projection mapping
 - Self-driving
 - Surveillance




- Target:
 - Implement 1ms foreground detection system.
- Challenges:
 - High speed up & Reduce storage consumption
 - Robust for illumination change
 - Distinguish different objects

Proposal

Evaluation result

Detection accuracy:

	ViBe	P1	P1+P2	P1+P2+ P3
Average	78.78%	80.12%	80.56%	85.17%

- Hardware performance:
 - Input frame rate: 784fps
 - Processing delay:0.908ms/frame

Resource	Utilization	
# LUT	131976 (64.76%)	
# Flip Flop	131209 (32.19%)	
# BRAM	87.50 (19.66%)	
# DSP	36 (4.29%)	

Conclusion

- Average F-score of P1+P2+P3 is 85.17%, 6.28% higher than original ViBe. And reducing storage around 3 times
- Solving the problems caused by illumination change and multi-objects

