

Self-Supervision and Spatial-Sequential Attention Based Loss for Multi-Person Pose Estimation

Background

Importance & Application

- Sports analysis
- Activity recognition
- Surveillance
- • •

Proposals

 P1: Resolution irrelevant encoding with inner-block offset

Small size outputs Inner block offset (4×4)

High resolution results

 P3: Progressive direction distinction based multi-stage loss function

Fault detection punish ratio Stage

.. **5**tage 6

_ .

Results
OKS score and visualization

Test dataset	OpenPose	+P1~4
COCO Mini val2014	58.4%	63.9%
COCO Val2017	57.7%	63.1%
COCO Test-dev2017	56.6%	62.8%

Target

- Improve pose estimation algorithm's accuracy
- The baseline model is OpenPose

修士課程卒業

Challenges

- Inevitable upsamping errors
- Information utilization unbalance
- Inefficient utilization of network stages
- No task level information sharing
- P2: Gaussian loss mask based spatial attention loss function

Output Target

Different weights for different pixels

P4: Kullback-Leibler divergence based self-supervision loss function

OpenPose (left) Ours (right)

Conclusion

- The final accuracy is 0.639 while that of conventional work is 0.584
- Improved multi-person pose estimation algorithm's accuracy with low extra computation complexity

Graduate School of Information, Production and Systems Waseda University