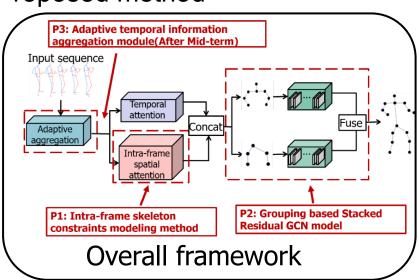
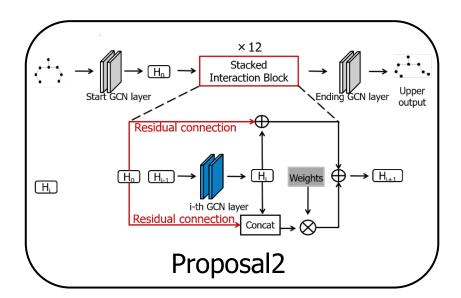

Intra-Frame Skeleton Constraints Modeling and Grouping Based Stacked Residual Graph Convolution Network for 3D Human Motion Prediction

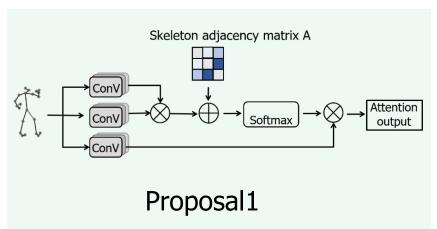
庄智涵 池永研究室 修士課程修了

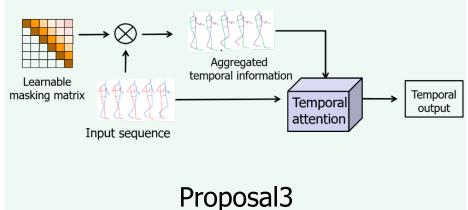
Research background

Predicting future motions and poses of the human body


Pedestrian avoidance Blind collision prediction


3D human motion prediction system


Help with autonomous driving and human-machine interaction


A prediction task that requires higher accuracy

Proposed method

Experiments

MPJPE for both short-term and long-term prediction on the Human3.6M dataset

Millisecond	Human3.6M							
	80	160	320	400	560	720	880	1000
LTD-50-25	12.2	15.4	50.7	61.5	79.6	93.6	105.2	112.4
LTD-10-10	11.2	23.4	47.9	58.9	78.3	93.3	106.0	114.0
CW1	10.7	23.0	47.8	59.1	78.2	92.4	104.4	111.9
siMLPe	10.3	22.6	48.5	59.7	78.2	92.0	104.4	110.8
ours	10.2	22.4	46.8	57.9	77.0	91.3	103.9	111.6

Conclusion

The evaluation result shows that the proposals achieves an average MPJPE of 31.54mm for short-term prediction

