

Video processing SoC

2004. 11. 27

Takeshi Ikenaga

The Graduate School of Information,
Production and Systems
Waseda University

 Position and Research targets of System LSI application group

- Activities for video processing SoC
 - Content based ME for MPEG and H.264
 - Video coding based on adaptive tree
 - Selective video encryption
 - Adaptive fast-forwarding

Faculties and research area

System LSI application group

Satoshi Goto

Application Area

Multimedia, Mobile, Ubiquitous

Takeshi Ikenaga

On-Cinp Memory and CAM

Takaaki Baba

High Level Design and Verification

Takeshi Yoshimura

Partitioning and

Logic Design

Layout

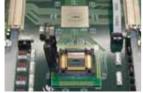
Shinji Kimura

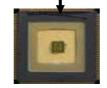
Takahiro

Watanabe

Tsutomu Yoshihara

Yasuaki Inoue




Analog Circuit Design and Simulation

Toshihiko Yoshimasu

Integration of Digital / Analog,
MEMS, Sensors and Micro Energy

Noriyoshi Yamauchi

Research Target

Knowledge processing

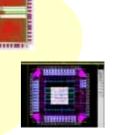

Recognition, Data mining, ...

Image processing

Image coding, Computer graphics, ...

Security ! processing

Encryption, Virus detection, ...

Network processing

Error collection, Adaptive network, ..

Media

Communication

Activity map of video processing SoC

3) Selective video encryption

Video security

Fastforwarding

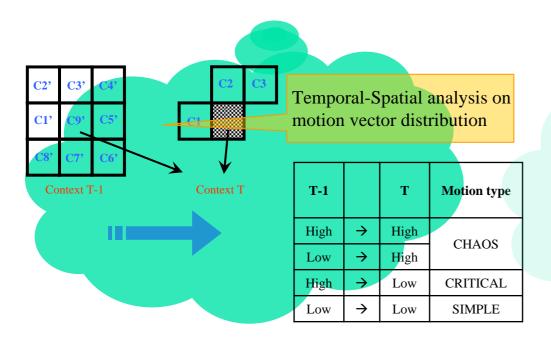
4) Adaptive fastforwarding

International standard MPEG2/4, H.264

1) Content based ME algorithm

Non-international standard

2) Video coding based on adaptive tree


Content-based Motion Estimation with Extended Spatial-Temporal Analysis

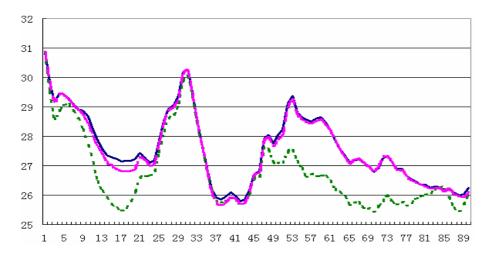
1. Video Contents Identification
Recognition of different video nature

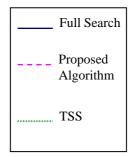
2. Content-based Adaptive Algorithm

Dynamic optimization of M.E strategy

Motion type	Search strategy		
	Search Range	Search pattern	
SIMPLE	$N_{\it simple}$	FS	
CRITICAL	N _{critical}	FS	
CHAOS	$N_{\it chaos}$	TSS	

Shen Li, Yong Jiang, Takeshi Ikenaga, Satoshi Goto, "Content-based Motion Estimation with Extended Temporal-Spatial Analysis", The 47th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS2004), July 2004.

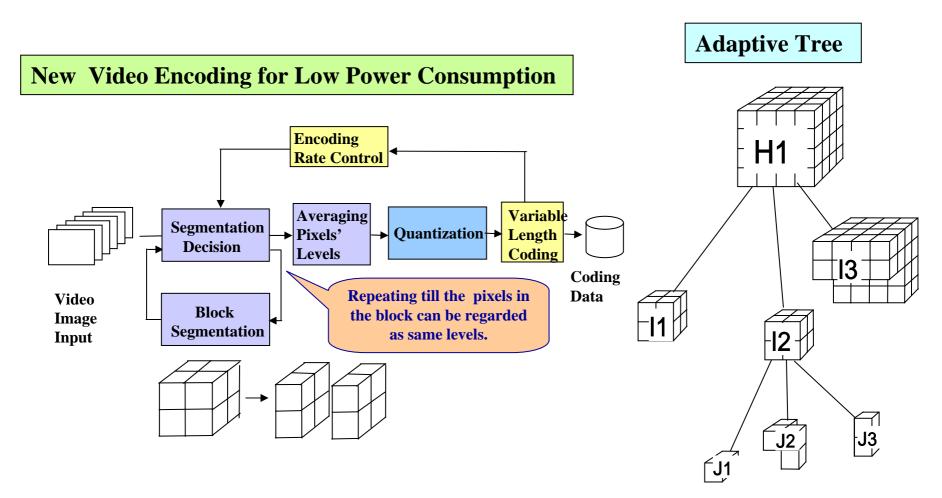

Evaluation Results



1. Computational Complexity in terms of No. Search points / block

	Akiyo	Carphone	Foreman	Stefan	Football
FS	961	961	961	961	961
TSS	33	33	33	33	33
Our Method	24.7	25.8	26.1	28.2	37.4

2. Visual quality in terms of PSNR

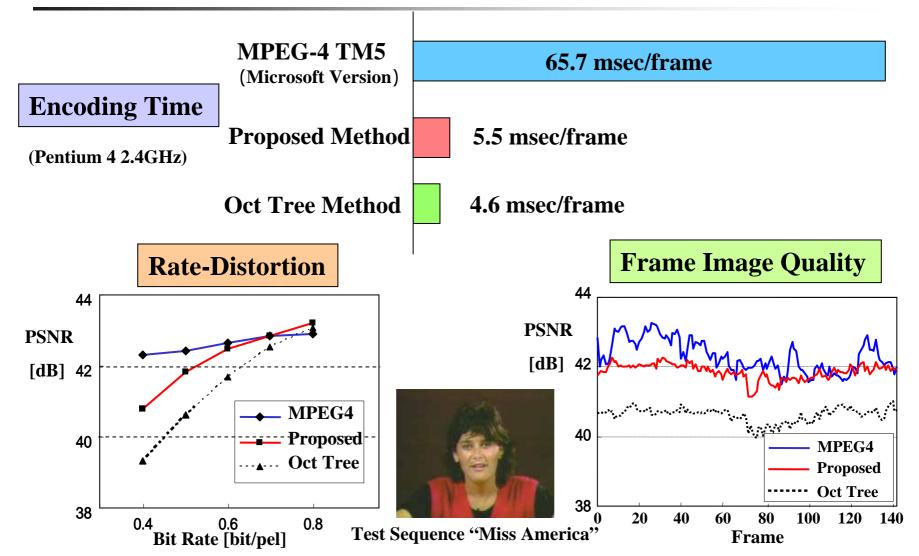


Max PSNR drop: 0.334db, while that

of TSS: 1.984db

PSNR of Y plane, Stefan (CIF), 90 frames, 1024kbps.

Video Coding Algorithm Based on Adaptive Tree for Low Power Consumption

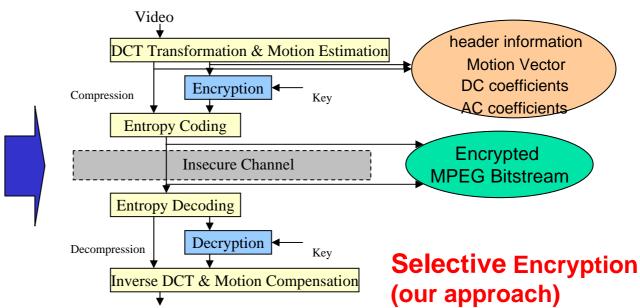


Seiichiro Hiratsuka, Satoshi Goto, Takaaki Baba, Takeshi Ikenaga, "Video Coding Algolithm Based On Adaptive Tree for Low Power Consumption", 2004 IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS2004), Dec. 2004.

Evaluation Results

Selective Video Encryption Scheme for MPEG Compression Standard

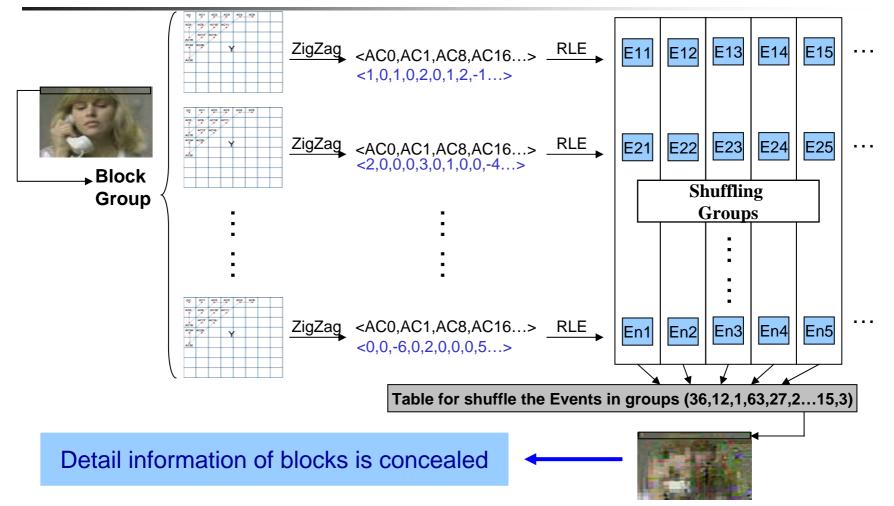
Video


Bitrate:

Raw video data: 30-100Mb/s

MPEG1: 1.5Mb/s MPEG2: 16Mb/s MPEG4: 32-384Kb/s

DES / AES


Full Encryption (conventional)

Event Shuffle

Gang Liu, Satoshi Goto, Takaaki Baba, Takeshi Ikenaga, "No Bit Overhead MPEG Video Scrambling based on Event Shuffle in Frequency Domain", IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS2004), Dec. 2004.

Evaluation results

Evaluation result of processing time

Video encodii	MPEG	Event Shuffle (proposed method)		Block Shuffle		Subband Shuffle		
	Time(ms)	Group Number	Time(ms)	Overhead	Time(ms)	Overhead	Time(ms)	Overhead
"Carphone"	6906	2831	15.09	0.22%	29.30	0.42%	48.03	0.70%
"Susie"	8407	2923	15.10	0.18%	28.56	0.34%	47.80	0.57%
"Foreman"	7343	4065	21.24	0.29%	28.27	0.38%	47.95	0.65%
"Salesman"	4985	4410	23.09	0.46%	29.30	0.59%	48.03	0.96%

Evaluation result of Bit overhead

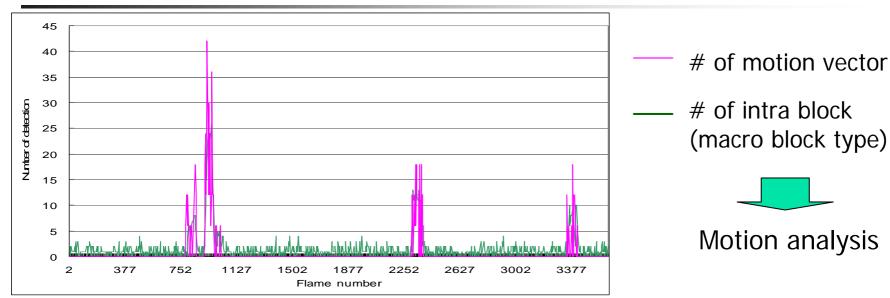
Scramble Method	File Size (Byte)	Bit Overhead (%)
No Scramble	165,617	0
Event Shuffle(ours)	165,617	0
Sub band Shuffle	198,409	19.8
Block Shuffle	259,025	56.4

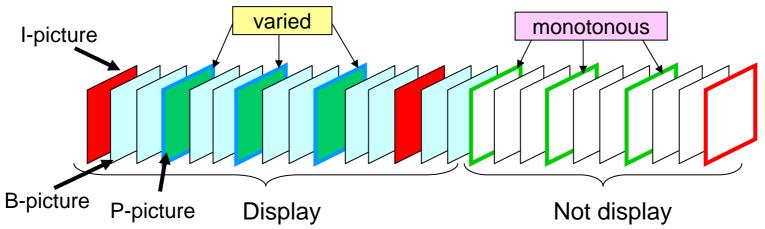
Sample video sequences of a surveillance camera

6X fixed-speed fast-forwarding (20sec)

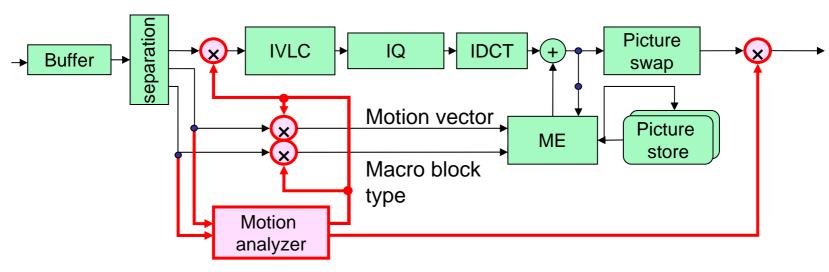
Proposed adaptive fast-forwarding (14sec)

Sample video sequences of a camcorder


5X fixed-speed fastforwarding (54 sec)

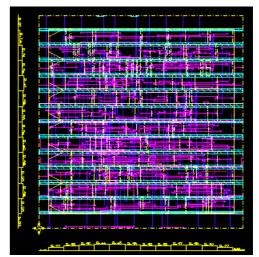

Proposed adaptive fastforwarding (47 sec)

Adaptive fast-forwarding algorithm



Hardware evaluation

Process technology: ROHM 0.35 μ m


Synthesis tool: DESIGN COMPILER (synopsys)

Back-end tool: Apollo(synopsys)

Number of Gate: 502 gates

Area: $0.2 \times 0.2 \text{mm}^2$

Clock frequency: 457MHz

Summary

- System LSI application group challenges to develop various kinds of video processing Soc as well as security and network processing SoCs
- Activities for video processing SoC
 - From MPEG to H.264
 - From standard to non-standard video coding
 - From video coding to value-added new function (encryption, fast-forwarding, ..)