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Summary

The focus of this dissertation is the design of a highly-parallel computer for real-time

image-understanding processing, one that is extremely compact and provides very high

levels of performance. This computer can be used for implementation of various image-

understanding applications in the �elds of industrial inspection, medical imaging, intelli-

gent transportation systems (ITS), robotics, multimedia, human interface, entertainment,

image coding, and so forth.

The result is CAM2, which stands for Cellular AutoMata on Content-Addressable

Memory. As the name shows, this new architecture combines cellular automaton (CA) and

content-addressable memory (CAM). A CA is a promising computer paradigm that can

break through the von Neumann bottleneck. A two-dimensional CA is especially suitable

for application to pixel-level image processing because an image has a two-dimensional

topology. Although various architectures for processing two-dimensional CA have been

proposed, there are no compact, practical computers. So, in spite of its great potential,

CA is not widely used. To remedy this situation, I can think of a CAM turned to CA

processing. CAM, or an associative processor, that can perform various types of parallel

processing with words as the basic unit is a promising component for creating a compact

CA cell array because of its suitability for LSI implementation. CAM makes it possible

to embed an enormous number of processing elements (PEs), corresponding to CA cells,

in one VLSI chip. It can attain pixel-order parallelism on a single board.

There are three basic problem areas that must be integrated in order to produce a

high-performance, compact, and 
exible CAM2 and demonstrate its usefulness for real-

time image-understanding processing. These three areas are
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1. computer architecture,

2. LSI and system design and implementation, and

3. applications.

In the computer architecture area, the study e�ort is focused on the following three

architectural considerations: CA mapping, CA processing, and data loading and retrieval

processing. Multiple-zigzag mapping enables two-dimensional CA cells to be mapped into

CAM words, even though physically a CAM has a one-dimensional structure. Dedicated

CAM functions enable high-performance CA processing. Furthermore, parallel loading

and partial word retrieval techniques enable high-throughput data transfer between CAM2

and the outside image bu�er. The performance evaluation results show that 256 k CA

cells, which correspond to a 512 � 512 pixel picture, can be processed by a CAM2 on a

single board using deep sub-micron process technology. Moreover, the processing speed is

more than 10 billion CA cell updates per second (CUPS). This means that more than a

thousand CA-based image processing operations can be performed on a 512 � 512 pixel

image at video rates (33 msec). These results demonstrate that CAM2 will represent a

major step toward the development of a compact and high-performance two-dimensional

cellular automaton.

In the design and implementation area, fully-parallel 1-Mb CAM LSIs with dedicated

functions for CA processing have been designed and fabricated, as has a proof-of-concept

prototype CAM2 system (PC board) using these LSIs. To satisfy the extremely severe

design constraints of the state-of-the-art process technology (0.25 �m), this study involves

not only VLSI circuit design, but also packaging technology, circuit board fabrication

technology, power and signal distribution techniques, heat dissipation problems and design

and veri�cation strategy. The CAM chip capable of operating at 56 MHz with 2.5-V power

supply was fabricated using 0.25-�m full-custom CMOS technology with �ve aluminum

layers. A total of 15.5 million transistors have been integrated into a 16.1�17.0-mm

chip. Typical power dissipation is 0.25 W. The processing of various update and data
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transfer operations was performed at 3-640 GOPS. The fabricated CAM has 16 k words,

or processing elements (PEs), which can process 128 � 128 pixels in parallel, and a

board-sized pixel-parallel image processing system can be implemented using several chips.

Indeed, the prototype board has a two-dimensional array (2 � 2) of CAM chips, and can

handle a 256 � 256 pixel image. Since PCI bus and NTSC video interfaces are also

embedded in the board, a compact image-processing platform can be built simply by

connecting the board to a personal computer and a video camera. The LSI and the board

con�rm that an economically feasible, compact, high-performance, and 
exible CAM2 can

be actually obtained with the current technology.

In the application area, two rather advanced computation paradigms based on CA are

taken up: discrete-time cellular neural network (DTCNN) and mathematical morphology.

DTCNN is a promising computer paradigm that fuses arti�cial neural networks (ANN)

with the concept of CA. Mathematical morphology is an image transformation technique

that locally modi�es geometric features through set operations. Both are becoming pow-

erful tools with various applications in image processing �eld. Here, e�cient mapping and

processing methods to perform various kinds of DTCNN and morphology processing are

studied. Evaluation results show that, on average, CAM2 can perform one transition for

various DTCNN templates in about 12 �sec. CAM2 also can perform one morphological

operation for basic structuring elements within 30 �sec. These results mean that more

than a thousand operations can be carried out on an entire 512 � 512 pixel image at video

rates (33 msec). Furthermore, CAM2 can perform practical image processing through a

combination of DTCNN, morphology, and other algorithms. These results demonstrate

that CAM2 will enable fuller realization of the potential of DTCNN and morphology and

contribute signi�cantly to the development of real-time image processing systems based

on DTCNN, morphology and a combination of them.
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Chapter 1

Introduction

1.1 Background and purpose of this dissertation

1.1.1 Cellular automaton as a computation paradigm for image

processing

Von Neumann made two signi�cant contributions to the history of digital computers. One

was single central processing unit (CPU) computer architecture, which is generally called

the von Neumann architecture. It is regarded as the most fundamental technology for

creating stored-program sequential computers and is widely used to date. The other was

his work in parallel computing via his research on arrays of computers. This array is

called a cellular automaton (CA) [1], [2], and was originally conceived by von Neumann

more than a half a century ago.

A CA is a dynamical system in which space and time are discrete. The CA consists of

an array of identical computers or processing elements (PE) each with its own value and

connected to its immediate neighbors. Figure 1.1 shows an example of a two-dimensional

CA. CA processing is carried out by the iterative operations of CA-value transfer and

update. A transfer operation involves transferring the values of neighboring cells to the

original cell. An update involves calculating the next value for the original cell simulta-

neously in discrete steps by applying a local, identical interaction rule to the original and

neighboring cell values. From the point of view of parallel machines, a CA exhibits three

notable features: large-scale parallelism, local cellular interactions and simple basic com-

ponents (cells). It can also be classi�ed as a typical single instruction multiple data stream

1



2 CHAPTER 1. INTRODUCTION

(SIMD) model based on Flynn's taxonomy [3], [4] of parallel computers. Moreover, from

the programming point of view, a CA o�ers an extremely simple environment, compared

with other parallel processing models. Even though the mechanism is very simple, a CA

is a promising computer paradigm that can break through the von Neumann bottleneck

that greatly degrades the performance of high performance computers required to handle

large volumes of data.

cell
(1,1)

cell
(1,2)

cell
(1,3)

cell
(1,Y)

...

cell
(2,1)

cell
(2,2)

cell
(2,3)

cell
(2,Y)

...

cell
(X,1)

cell
(X,2)

cell
(X,3)

cell
(X,Y)

...

X

Y

CA-value transfer: transferring the values of 
neiboring cells to the original cell

CA-value update: calculating the next value 
for the original cell by applying a particular 
transition rule to the original and neiboring cell 
values

Figure 1.1: Model of two-dimensional cellular automaton.
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Neumann's �rst objective with the CA was to �nd a precise way of dealing with the

problem of how to have machines reproduce themselves [2]. The CA was considered to

provide a formal framework for investigating the behavior of complex, extended systems.

Various kinds of arti�cial life research have been undertaken based on this concept [5].

However, the CA o�ers far more possibility than those for which it was �rst intended; it is

also a promising computation paradigm for other �elds. In particular, a two-dimensional

CA has many applications as regards pixel-parallel image processing and low (process-

ing from image to image) to intermediate (processing from image to symbol) level vision

processing [6], because an image has a two-dimensional topology. Indeed, most conven-

tional pixel-parallel image processing algorithms, such as segmentation, skeletonization

[2] and linear �ltering [7], [8], can be easily mapped on a CA. Two rather advanced ap-

plications are discrete-time cellular neural networks (DTCNN) [9], [10] and mathematical

morphology [11], [12].

In spite of its great potential and long history, a CA is not widely used in the �eld

of image-understanding processing, probably because there are no compact, practical

computers that can process real-world images of several hundred thousand pixels at video

rates.

1.1.2 Architecture for 2D cellular automata

Vision plays an important role in the exchange of various kinds of information or even

emotions in a wide range of human communication situations. Vison is also useful for

obtaining various kinds of information from the real world. Thus, it is easy to believe

that a vision system would have many applications both as a communicating medium

and a rich sensor. Indeed, image-understanding processing is becoming indispensable for

the implementation of various applications in the �elds of industrial inspection, medical

imaging, intelligent transportation systems (ITS), robotics, multimedia, human interface,

entertainment, and image coding [8].

There are three factors that must be considered for a vision system designed to cover
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this wide range of applications. The �rst factor is processing performance. Pixel parallel

image processing and low to intermediate vision processing are indispensable for the above

applications. However, this type of processing requires us to execute a very large number

of logical and arithmetical operations for high-volume image data, especially for real-

time applications, because it requires iterative update and data transfer operations for

all pixel data. For example, performing a single operation on each pixel translates to

23 million instructions per second for a 512 � 512 pixel color image. In many cases,

such operations must be repeated a large number of time and many vision researchers

believe that one hundred thousand times the above number of operations is required [13].

It is almost impossible for general-purpose microprocessors to handle such processing

no matter how fast they might become with the progress of LSI technology. Therefore,

hardware with extremely high levels of performance and high-frequency memory access

is highly desirable.

The second factor is system size. Since in most vision applications, a vision system

is placed in front of a user (e.g. a PC or an information terminal for human interface

applications) or is embedded in some kind of on-site box (e.g. a sensor box in ITS

applications), the system should be compact; otherwise, it would not be practical to use

it outside a laboratory.

The last factor is 
exibility. Most vision algorithms consist of various kinds of opera-

tions and their combinations. Moreover, since the computer vision �eld is still a rapidly

evolving area of research, new algorithms are constantly being developed and tested.

Innovative algorithms may continue to appear. Thus, to cover this widering range of

applications, the vision system should be as 
exible as possible. This means that high

levels of performance, compactness and 
exiblity are key factors when designing a two-

dimensional CA for image understanding.

Next, I survey conventional CA architectures for image processing and discuss their

problems in terms of the above key factors. Conventional architecture falls into two

categories: 2D SIMD cellular array and multiple-stage pipeline architecture.
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2D SIMD cellular array architecture

A fully-parallel two-dimensional SIMD cellular array architecture has been proposed with

a view to realizing a computer for CA, or a cellular logic computer (CLC) [14]. Many

machines such as CLIP-4 [15], MPP [16], AAP-2 [17], CM-2 [18] and MP-1 [19] have

been developed. The fully-parallel type, which consists of two-dimensional processing

elements (PEs) and interconnection networks, is the most natural architecture for two-

dimensional CA. The drawback of the conventional fully-parallel approach is the huge

amount of hardware it requires. At most, only several dozen PEs can be embedded in

one VLSI chip. Therefore, enormous numbers of VLSI chips are required if we wish to

realize pixel-order (several hundred thousand) parallelism, which is crucial as regards CA

performance. Moreover, two-dimensional interconnection networks cause I/O bottlenecks,

so it is di�cult to increase the number of PEs even if we adopt state-of-the-art LSI

technology.

Multiple-stage pipeline architecture

Multiple-stage pipeline architectures, such as Cytocomputer [20] and CAM8 [21] have also

been proposed for CLC. Since these machines are not true CA, they are also called cellular

automaton machines. This architecture can achieve high-performance CA processing, but

the hardware structure must be fully tuned to the application because the most suitable

con�guration is di�erent for di�erent applications. Due to this lack of 
exibility, it is not

truly suitable for practical pixel-level image processing that requires various CA processes.

Against this backdrop, it is very clear that conventional architectures are unsatis-

factory solutions to the problem of developing compact, practical, and 
exible CA for

image-understanding processing. The purpose of this study is to develop a compact,

high-performance, 
exible highly-parallel two-dimensional cellular automaton for real-

time image-understanding processing. The result is CAM2, which stands for Cellular

AutoMata on Content-Addressable Memory.
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1.2 Key technologies: HiPIC and CAM

I focused on two important technical isues with a view to achieving the goal of my research,

namely the development of a compact, high-performance, and 
exible CA called CAM2.

These issues were the system model and the LSI architecture. The former is the key

to creating a 
exible system. The latter is the key to achieving both high levels of

performance and compactness simultaneously.

1.2.1 System model for image processing

The highly-parallel integrated circuits and system (HiPIC) concept is used as the system

model for real-time image processing. HiPIC is a highly-parallel system model devised

for application-speci�c systems, to achieve both high levels of performance and 
exibility.

Figure 1.2 shows the basic idea of HiPIC. A HiPIC consists of a highly-parallel PE array,

a recon�gurable logic element, a reduced instruction set computer (RISC) processor or a

digital signal processor (DSP), and some memory. It can be implemented on a chip, as

a multi-chip module, or on a board. The highly-parallel PE array (shaded block in the

�gure) performs SIMD processing for high-volume image data. The logic element controls

the PE array and interfaces with the image data and an external processor. The processor

performs serial data processing.

Various practical real-time image processing systems and their hardware algorithms,

such as the facial image tracking (FIT) system [23] and the voting system [24] { [28], have

already been developed based on HiPIC. Figure 1.3 shows examples of HiPIC systems.

The board in the upper right of the �gure is used for the real-time tracking of moving

objects utilizing CAM-based local spiral labeling [23]. Labeling is one method of basic

image processing, and it involves applying a unique label number to each closed region in

the image. The board in the lower right of the �gure is for shape and feature extraction

based on the CAM-based Hough transform, and 3D projection, which are both voting

methods. It can perform line and circle detection [24] { [27] and 3D feature extraction

[28]. They are implemented as add-on boards for personal computers, which makes them
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easy to use. These systems demonstrate that HiPIC is a very e�ective way to handle

real-time image processing, which is why I also employed it as a system model for CAM2.

1.2.2 LSI architecture for CA cell array

The other issue is the LSI architecture for a CA cell array. The performance of CAM2

depends strongly on the data processing capabilities of the PE or CA cell array. The most

important thing is that the array must have su�cient parallelism implemented in very

little hardware. For example, several hundred thousand PEs are required for practical

image processing. That means that the PE has to be simple. In addition, to avoid the

von Neumann bottleneck, the most suitable PE is the logic-in-memory type. Based on

these considerations, I can think of a CAM turned to CA processing as a PE array of

CAM2 on HiPIC.

Next, I survey related LSI architectures targeted for image processing. Then, I address

the features and problems of conventional CAMs by comparison with these architectures.

Media processor chip

One promising LSI for creating a compact high-performance image-understanding system

is a media processor [29], [30] or a microprocessor with multimedia extensions (MMX)

[31], [32] which has dedicated parallel operations for image processing. This LSI is based

on microprocessor technologies, and it is easy to make a high-frequency chip. However,

the degree of parallelism is not very high. This prevents the full use of the abundant par-

allelism of pixel-parallel algorithms; and, as a result, the processing speed is insu�ciently

high many real-time applications.

Linear array processor chip

The degree of parallelism of a linear array processor [33], [34] is relatively high because

of its simple and regular structure. However, since it can only perform one-dimensional

processing (line data can be handled in parallel), iterative operations (in proportion to

image size) are required to develop an entire image. By adopting a higher-performance
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processing element (PE) like IMAP [33] with 8-bit-width PEs, the processing performance

can be boosted. However, since the bit width of each PE is �xed, it is less 
exible as

regards the bit width of processed data. For example, its processing power cannot be

fully utilized for a binary image.

Analog vision chip

An analog vision chip [35] { [37], which features imaging devices, such as photo detectors,

and computational circuits on a single chip, is another candidate. However, it is extremely

di�cult to develop a large-capacity chip that can process a practical image of several

hundred thousand pixels because of problems with reliability, accuracy, and production

yield. Therefore, most vision processors contain very few elements, and since they do

not have scalability, even if plural chips are used, they cannot handle a larger (real-

world) image. Furthermore, since each element has extremely limited functions, there is

insu�cient 
exibility for practical, or complex, image processing.

Content addressable memory (CAM)

Content addressable memory (CAM) is well known as a functional memory [38] { [41] and

various types of CAM [42] { [49] have been developed since about 1980. The development

trends for fully-parallel CAMs, excluding ROM and EEPROM types, are shown in Fig.

1.4.

The CAM capacity is proportional to the progress of LSI technology because CAM's

memory-based structure is the most suitable for implementation with LSI technology.

Indeed, as shown in Fig. 1.4, CAM capacity is increasing almost exponentially and this

trend will last until the current progress on LSI process technology saturates. More-

over, its high-density structure enables us to reduce the wiring capacitance, which is the

main factor behind rising power consumption. Therefore, a high capacity LSI can be

implemented without causing a power consumption bottleneck.

Conventional CAMs fall into two categories:

1. CAM with only a search function, and
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2. CAM with a parallel write function in addition to a search function.

Although the former type, which accounts for most of the conventional CAMs, has

a particularly high capacity (e.g. the 2.5 Mb CAM [49]), it has only been used as a

search engine in a LAN or for similar applications because of its limited functionality. In

contrast, the latter type of CAM, which is also called an associative processor or a content

addressable parallel processor [50], is capable of not only a parallel search but also various

types of parallel data processing with words as the basic unit. This makes it a promising

candidate for creating a compact, highly-parallel image processing system that requires

both high levels of performance and high data throughput.

One example of an associative processor for image processing is the content address-

able array parallel processor (CAAPP) [51]. It incorporates advanced communication

networks, such as coterie networks, to allow it to perform a wider range of low-level

computer vision applications. But only 256, or 16 � 16, PEs are embedded in one VLSI

chip. Therefore, enormous numbers of chips are required to realize pixel-order parallelism.

Moreover, since its network structure becomes extremely complicated as the array size

is increased, it is di�cult to increase the number of PEs even if we use state-of-the-art

LSI technology. The 336 k-bit CAM [48] and the pixel-parallel image processor [52] are

examples with a relatively large number of PEs (4096 PEs) reported to date. However,

the 336 k-bit CAM does not have an e�cient mechanism for transferring data between

words, while the image processor has no functions for global data handling. This lack

of 
exibility severely limits their usefulness for pixel-parallel image processing applica-

tions. Moreover, they still have insu�cient capacity; many chips, 16 � 64, are required

to achieve pixel-order parallelism (several hundred thousand pixels).

1.3 Thesis scope

The objective of this dissertation is to describe the development of a compact, high-

performance, 
exible highly-parallel two-dimensional cellular automaton for real-time



12 CHAPTER 1. INTRODUCTION

image-understanding processing. To attain this goal, this thesis focuses on three areas of

research:

1. computer architecture,

2. LSI and system design and implementation, and

3. applications.

To cover these three areas, the thesis consists of six chapters as shown in Figure 1.5.

Chapter 2 describes the basic architectural concepts and technologies of a highly-

parallel two-dimensional cellular automaton architecture called CAM2. CAM2 is estab-

lished on a system model called HiPIC and on CAM technologies. Both are vital for

realizing a compact, high-performance, and 
exible two-dimensional CA. The main theme

of my CAM2 study e�ort focused on the following three architectural considerations: CA

mapping, CA processing, and data loading and retrieval processing. Multiple-zigzag map-

ping enables two-dimensional CA cells to be mapped into CAM words, even though phys-

ically a CAM has a one-dimensional structure. Dedicated CAM functions, such as the

shift up/down mode for hit 
ag, enable high-performance CA processing. Furthermore,

parallel loading and partial word retrieval techniques enable high throughput data trans-

fer between CAM2 and the outside image bu�er. Chapter 2 also presents various results

of a performance evaluation based on CAM2, such as possible CAM2 in a single PC board,

and CA processing and data loading and retrieval processing performance.

Chapter 3 describes a fully-parallel 0.25 �m 1-Mb CAM LSI with dedicated functions

for CA processing and a prototype CAM2 PC board using this CAM chip. To make such a

large capacity CAM that satis�es the extremely severe design constraints of state-of-the-

art process technology (0.25 �m), this study involves not only VLSI circuit design, but also

packaging technology, circuit board fabrication technology, power and signal distribution

techniques, heat dissipation problems and design and veri�cation strategy. Concretely, I

devise a scheme that combines one-dimensional (intra-block) and two-dimensional (inter-

block) physical structures and comb data and clock distribution techniques. Moreover,
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I propose both manual and synthetic design strategies to speed up chip development

while achieving a CAM with a high-density structure. Chapter 3 also presents various

estimation results, related to such factors as operating frequency, power consumption and

chip size, based on an actual fabricated chip.

Chapters 4 and 5 describe image processing applications of CAM2 to demonstrate

that CAM2 has wide applicability to various kinds of practical real-time image processing.

Many basic image processing algorithms based on CA, such as segmentation, skeletoniza-

tion and cellular �ltering, have already been proposed [2] and it is clear that CAM2 can

also handle them e�ciently. Here, I focus on two advanced computation paradigms based

on CA. These two paradigms are discrete-time cellular neural networks (DTCNN) [9],

[10] and mathematical morphology [11], [12]. DTCNN is a promising computer paradigm

that fuses arti�cial neural networks with cellular automaton (CA) concept. Mathematical

morphology is an image transformation technique that locally modi�es geometric features

through set operations. Both are powerful tools with various applications in the �eld of

image processing where they are becoming very commonly used [53], [54]. Here, I study

a mapping and processing method designed to perform various kinds of DTCNN and

morphology processing. New mapping and processing methods achieve high-throughput

complex DTCNN and morphology processing. Chapters 4 and 5 also present processing

time estimation results and various kinds of image processing. CAM2 performs practi-

cal image processing, such as pattern spectrum and multiple object tracking, through a

combination of DTCNN and morphology and other algorithms.

Chapter 6 summarizes the results of these research activities from the standpoint of

computer architecture, LSI and system implementation and applications. Chapter 6 also

indicates the future direction of research that will further improve the performance of

CAM2 and expand its use to various kinds of vision application.
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Chapter 2

Cellular automaton architecture:

CAM2

2.1 Introduction

In this chapter, I explain a highly-parallel two-dimensional cellular automaton architecture

called CAM2 in detail from an architectural point of view. CAM2 can attain pixel-order

parallelism on a single PC board because it is composed of a CAM, which makes it possible

to embed an enormous number PEs, corresponding to CA cells, onto one VLSI chip.

The major research subject that must be studied is mapping method of two-dimensional

CA into a CAM. I devised multiple-zigzag mapping and horizontal and vertical inter-CAM

connection networks for it. They enable two-dimensional CA cells to be mapped into

CAM words, even though physically a CAM has a one-dimensional structure. Another

important subject is how to execute CA processing on a CAM. Since conventional CAM

cannot perform it, I devised dedicated CAM functions, such as the shift up/down mode

for hit 
ag. These functions are carefully chosen not to lose CAM's simplicity, which

is the most important factor to create a high-density CAM. I also propose Intra- and

inter-CAM transfer procedures for CA-value transfer. These functions and procedures

enable high-performance CA processing. Data loading and retrieval processing, which

are rather common problems for most parallel processors, is also an important subject

to study. I propose parallel loading and partial word retrieval techniques that are fully

utilized CAM's feature to solve this problem. They enable high throughput data transfer

15
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between CAM2 and the outside image bu�er.

I also show various results of a performance evaluation based on CAM2 in this chapter.

Possible CAM2, such as CA cell size and number of I/O pins, in a single PC board is esti-

mated based on the trend of state-of-the-art VLSI and CAM technologies. Furthermore,

I present results of CA processing and data loading and retrieval processing performance.

For the evaluation, the functional hardware model of CAM2 written in Verilog-HDL [55]

was developed.

This chapter is organized as follows. Section 2.2 presents the basic architecture of

CAM2. This is followed, in Section 2.3, by a description of the CA processing. After

discussing the data loading and retrieval techniques in Section 2.4, the performance eval-

uation results are shown in Section 2.5.

2.2 Basic architecture

As described in Chapter 1, CAM2 is established on a system model called HiPIC (highly-

parallel integrated circuits and system) and on CAM technologies [22], [45]. Both are

vital for realizing the compact, high-performance, and 
exible two-dimensional CA. First

of all, I explain how these technologies apply for creating CAM2.

2.2.1 CAM2 based on HiPIC

Figure 2.1 shows features of CAM2 on HiPIC.



2.2. BASIC ARCHITECTURE 17

m

n ( = w / m)

...

CAMCAM CAM

CAMCAMCAM

FPGAFPGA
interface CAM control

Memory
image buffer

RISC/DSP
sequential
processing Highly-Parallel PE Array

...

... ... ...

...

c) Structure of CAM2 board

a) Physical structure of 
    CAM LSI/Block (1D)

b) Logical structure of  
    CAM LSI/Block (2D)

...

Mask Reg.

A
dd

re
ss

 D
ec

. Word  1
Word  2
Word  3
Word  4

Word  w
...

H
it 

F
la

g 
R

eg
.

   1 word
= 1 PE
= 1 CA cell
= 1 pixel

Figure 2.1: Features of CAM2 on HiPIC.

According to the HiPIC concept, CAM2 consists of a highly-parallel PE array, a �eld

programmable gate array (FPGA), a RISC processor or DSP, and some memory. The PE

array, which is the most important component in CAM2, is a two-dimensional array of the

proposed CAMs. Its main features are CAMs with dedicated functions for CA processing

and multiple-zigzag mapping. The dedicated CAM functions enable high-performance

CA processing, while the multiple-zigzag mapping enables two-dimensional CA cells to be

mapped into CAM words, even though physically a CAM has a one-dimensional structure

as shown in Fig. 2.1. The dedicated CAM and the PE array with multiple-zigzag mapping

will be explained in detail in Sections 2.2.2 and 2.2.3, respectively.
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The FPGA controls the highly-parallel PE array. The control logic, which generates

command sequences for CA processing, is mapped into the FPGA. Since an FPGA can

easily rewrite the logic, CAM2 performs various types of CA-based image processing,

such as discrete-time cellular neural networks [9], [10], mathematical morphology [11],

[12], linear �ltering [7], either alone or in combination. (The processing methods of

DTCNN and morphology will be described in detain in Chapters 4 and 5, respectively.)

Furthermore, the interface logic is also mapped into the FPGA. By changing the logic,

CAM2 can be embedded into various computer platforms.

The processor performs serial data processing. Since it can be used for various pre-

and post-CA processing, CAM2 can handle total image processing, including higher-level

processing.

The memory is used as a bu�er. It stores input images, temporary data, and processed

data. It is also used for storing some programs for the FPGA.

2.2.2 Dedicated CAM features for CAM2

CA processing is carried out by iterative operations of CA-value transfer and update.

To perform both operations e�ectively, the dedicated CAM for CAM2 has the following

functions.

� Word read/write using addresses (2.a)

� Maskable search (2.b)

� Parallel/partial write (2.c)

� Shift up/down mode for hit 
ag (2.d)

� Parallel execution of hit 
ag shift (2.d) and word read/write (2.c) (2.e)

The dedicated CAM can perform normal RAM operations, such as word reads and

writes using addresses (2.a). Using (2.a), every word can be directly accessed from/to

Data I/O. Furthermore, it can also operate as a SIMD PE array and do such things as a
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maskable search (2.b), and partial and parallel writes (2.c). For the search, the results are

accumulated in hit-
ag registers by means of OR logic. For the writes, the data are written

into speci�c bit positions of multiple words for which the value of the hit-
ag register is

1. Through the iteration of these two operations, the SIMD-type PE operations, such as

general associative, logical and arithmetic operations, can be carried out in a bit-serial,

word-parallel manner.

Our previously developed CAMs [45], [22] also have functions (2.a)-(2.c). However,

the data transfer between neighboring CA cells, which is indispensable for CA processing,

cannot be performed using only these functions. Therefore, two dedicated operations are

added: upward and downward hit-
ag shift (2.d), and the parallel execution of a hit-
ag

shift and a read or write using an address (2.e). These functions can be implemented

just by changing the peripheral circuit of CAM, i. e., changing the memory cell part

is unnecessary. So, the dedicated CAM LSI for CAM2 can be easily built by making

minimum re�nements to our previously developed CAMs, such as the 0.5-�m 336 k-bit

CAM [48].

Figure 2.2 shows a block diagram of the dedicated CAM for CAM2. It consists of

�ve function blocks: a cell array block, a bit operation block, a word operation block, an

interface block and a control block.

The cell array block is composed of an address decoder and words whose number is w.

The word is divided into writable bits and read-only bits. The writable bits can perform

both the maskable search (2.b) and the parallel write (2.c). So, SIMD-type PE operations

can be carried out to data on the bits. On the other hand, the read-only bits store �xed

address data and can only perform the maskable search (2.b) for the data. By masking

the read-only bits, plural words can be addressed.

The bit operation block controls the bit position for the maskable search (2.b) and

the parallel write (2.c). It is composed of a search mask register (SMR) and a write mask

register (WMR). SMR stores search mask data for both the writable and read-only bits.

WMR stores write mask data for only the writable bits.
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The word operation block is composed of hit-
ag registers (HFR) which store the hit


ags of all words. Using (2.d), the hit data are shifted to upper or lower words. So,

the hit-
ag register can be used as a 1 bit one-dimensional data transfer path between

words. These data can be shifted in/out through the Hit Data I/O. The Hit Data I/O is

connected to horizontally adjacent CAMs.

The interface block switches the path from/to the CAM controller (FPGA) and the

path from/to vertically adjacent CAMs. It has a �eld data register (FDR) which stores

the �eld data of one word. FDR is used in the CA-value transfer operation.

Since all of the CAM2 functions (2.a)-(2.e) are very simple, it is easy to implement.

Moreover the physical structure is very similar to that of a random access memory, as

shown in Fig. 2.2, and this type of memory-based structure is very suitable for imple-

mentation with LSI technology. Therefore, I can make an enormous number of PEs with

state-of-the-art process technology. The drawback of this scheme is that complex opera-

tions, such as the multiplication of many bits, take a long time. Moreover, CAM2 cannot

perform 
oating-point operations. However, since most CA-based algorithms do not need

such complex operations, I think the above functions will be useful for a variety of CA

operations.

2.2.3 Highly-parallel PE array with multiple-zigzag mapping

Figure 2.3 shows the basic structure of the highly-parallel PE array.

The PE array consists of a two-dimensional array (q � r) of the proposed CAMs.

Prominent features of the con�guration are as follows:

� Multiple-zigzag mapping (2.f)

� Horizontal inter-CAM connection networks (2.g)

� Vertical inter-CAM connection networks (2.h)

As mentioned before, CAM has only a one-dimensional data transfer path. Hence,

zigzag mapping is necessary in order to assign a two-dimensional CA (X � Y ) to CAM
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word. If single-zigzag mapping is used for this purpose, transferring the value from the

original cell to the horizontally adjacent cell requires many shift cycles, as shown in

Fig. 2.4(a). To address this problem, multiple-zigzag mapping (2.f) is devised. Since

multiple-zigzag mapping enables us to reduce the distance between horizontally adjacent

cells (1
q
that of single-zigzag mapping), as shown in Fig. 2.4(b), it reduces transfer cycles

signi�cantly.

...

a) Single-zigzag mapping

Distance = X

X

Y

...

...

...
...

Zigzag 1

Zigzag q

Zigzag 2

b) Multiple-zigzag mapping

:  1 CAM word 
= 1 PE 
= 1 CA cell

Distance = m = X / q

X

Y

m

m

m

Figure 2.4: Comparison of single and multiple zigzag mapping.

According to the strategy, the w words of each CAM are segmented everym words and

mapped tom�n CA cells. Totally, a two-dimensional CA having (X = m�q)�(Y = n�r)

CA cells is realized, as shown in Fig. 2.3.

The horizontal inter-CAM connection networks (2.g) connect the hit-
ag registers of

horizontally adjacent CAMs through the Hit Data I/O. This enables the horizontally adja-

cent CAMs to be considered one CAM in the hit-
ag register shift mode (2.d). Therefore,

data transfer between horizontally adjacent CAMs can be completely performed using

(2.f) and (2.g).

On the other hand, vertical data transfer for boundary words, the unshaded parts of the
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CAM in Fig. 2.3, can not be performed in above processing. So, multiple-zigzag mapping

(2.f) is not applicable to a conventional one-dimensional PE array architecture. But a

CAM can directly access each word through normal RAM operations (2.a). Therefore,

using this function and the vertical inter-CAM connection networks (2.h), which connect

the vertically adjacent CAMs through the Field Data I/O, the vertical data transfer of

the boundary words can be performed, too.

Furthermore, the connection networks scheme combining the one-dimensional intra-

CAM and the two-dimensional inter-CAM (2.g) (2.h) holds down the increase rate of I/O

pins. Therefore, the high level of performance and compact PE array can be realized

without I/O bottlenecks. The evaluation result for I/O pins is discussed in Section 2.5.

2.3 CA processing

In this section, CA processing using CAM2 is explained. As an example of the processing,

a four-neighbor (left, right, up, and down) CA model is used.

Figure 2.5 shows the CAM word con�guration for the CA model.

temporaryRC DL UCAM
word

Original cell  
field

Left  cell 
field

Right  cell  
field

Up  cell 
field

Down cell  
field

(CA cell) f bit f bitf bitf bitf bit

e bit

Figure 2.5: CAM word con�guration for a four-neighbor CA model.

Each CAM word, whose bit width is e, consists of an original cell value �eld, neighbors'

cell value �elds and a temporary �eld. The original cell �eld (C) stores the value of the

original cell. The neighbors' cell �elds store values in the left (L), right (R), up (U), and

down (D) cells. The bit width of these �elds is f , where f is determined by the dynamic

range of the CA value. The temporary �eld is used for storing carry, 
ag, and so on. All
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�elds are assigned to the writable bits.

CA processing is carried out by the iterative operations of CA-value transfer and

update. A transfer operation involves transferring the (C) values of neighboring cells to

the corresponding (L), (R), (U), and (D) �elds. An update involves calculating the next

value for the original cell by applying a particular transition rule to the (C), (L), (R),

(U), and (D) values. These operations are completely carried out in parallel.

2.3.1 CA-value transfer

In the CA processing, the CA-value transfer process dominates the performance of CA

processing in CAM2. To improve the performance, I devised two types of CAM transfer:

intra-CAM and inter-CAM transfer. In the intra-CAM and inter-CAM transfer processes,

inner words and boundary words are transferred, respectively.

Intra-CAM transfer

The intra-CAM transfer is carried out in the following sequence:

1. Set search mask.

2. Set write mask.

3. Maskable search to a certain bit of (C).

4. Upward/downward shift of hit 
ag (1 bit).

5. Parallel writing to the correspondent bit position of neighbors' cell �eld (U/D).

6. Upward/downward shift of hit 
ag (m� 1 bits).

7. Parallel writing to the correspondent bit position of neighbors' cell �eld (R/L).

8. Repeat 1-6 until all bits (f bits) of (C) are transferred.

As this shows, the processing is carried out in a bit serial manner. But all of the

processing, including the hit-
ag shift between horizontally adjacent CAMs, are carried
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out in parallel as explained in Section 2.2.3. Therefore, the entire intra-CAM transfer can

be done very quickly.

Figure 2.6 shows the intra-CAM transfer, in which a certain bit of original cell (C) is

transferred to its right and down CA cells. In the transfer, m cycles are needed for the

hit-
ag shift and � cycles for the rest of the operations, where � is less than 10. So, the

number of cycles needed to transfer all bits to the right and down CA cells Tintra(DR) is

Tintra(DR) = (m+ �)� f: (2.1)

The intra-CAM transfer to the left and up CA cells is done in the same way using

the hit-
ag shift-up function. Therefore, the total number of cycles for the inter-CAM

transfer Tintra is

Tintra = (m+ �)� f � 2: (2.2)

In the intra-CAM transfer, the hit-
ag shift is the most time-consuming step. However,

the multiple-zigzag mapping (2.f) reduces the number of cycles needed. For example, if

the number of zigzags is q, the transfer cycle is about 1
q
compared with that of single-zigzag

mapping.

Inter-CAM transfer

The inter-CAM transfer is carried out in the following sequence:

1. Transfer all bits (f bits) of a certain (C) in lower boundary words to FDR.

2. Transfer the data in FDR to the correspondent (U) in upper boundary words.

3. Repeat 1-2 until all lower boundary words are transferred.

4. Transfer all bits (f bits) of a certain (C) in upper boundary words to FDR.

5. Transfer the data in FDR to the correspondent (D) in lower boundary words.

6. Repeat 4-5 until all upper boundary words are transferred.
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Figure 2.6: Example of intra-CAM transfer (1 bit, to the right and down CA cells).
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All of the steps are carried out by the word read/write (2.a). Using the vertical inter-

CAM connection networks, all CAMs can perform the word read/write (2.a) in parallel.

Therefore, the inter-CAM transfer is also e�ectively performed.

Since the numbers of upper and lower boundary words in one CAM are both n, the

total number of cycles for the inter-CAM transfer Tinter is

Tinter = n� 4: (2.3)

An example of the inter-CAM transfer from lower boundary words to upper boundary

words is shown in Fig. 2.7.

Function (2.e) enables us to reduce the CA-value transfer cycle still more. Using this

function, the inter-CAM transfer can be carried out simultaneously during the hit-
ag

shift (2.d) in the intra-CAM transfer. By choosing proper m and n, the CA-value transfer

cycle can be dramatically reduced.

From the discussion above, it is clear that the dedicated CAM functions and map-

ping method (2.a)-(2.h) make a signi�cant contribution to the reduction of the CA-value

transfer cycles.

2.3.2 CA-value update

After the CA-value transfer process �nishes, the CA-value update process is invoked. In

the operation, according to the transition rule, various logical and arithmetic calculations

using the original and neighbors' cell �eld values are carried out, and the result is stored

to the original cell �eld (C). The maskable search (2.b) and the partial and parallel writes

(2.c) are used for the CA-value update processing. Through the iteration of these two

operations, various operations can be carried out.

For example, the f-bit GREATER-THAN operation fgreater than(X; Y )) Xg that

is required for processing gray-scale morphology (which will be explained in detail in

Chapter 5) is executed in the following steps:

1. Set search mask.
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2. Set write mask.

3. Maskable search for words whose Xi, Yi, F1, F2 is 0, 1, 1, 1.

4. Maskable OR search for words whose Xi, Yi, F1, F2 is 0, 1, 0, 0.

5. Parallel writing of 1, 0, 0 to Xi, F1, F2 of the hit words.

6. Maskable search for words whose Xi, Yi, F1, F2 is 1, 0, 1, 1.

7. Parallel writing of 1, 0, 1 to Xi, F1, F2 of the hit words.

8. Maskable search for words whose Xi, Yi, F1, F2 is 1, 0, 0, 0.

9. Parallel writing of 0, 0, 0 to Xi, F1, F2 of the hit words.

In this sequence, F1 and F2 are used as 
ags. (The initial values of F1 and F2 are

both 1. The condition of F1, F2 = 0, 0 indicates that \Y > X" is determined and the

condition of F1, F2 = 0, 1 indicates the opposite.) Figure 2.8 shows examples of the

maskable search in step 8 and the parallel write in step 9.

Since the processing must be repeated from MSB (I = f) to LSB (I = 1), the processing

time increases with their bit length. However, every word can perform the processing in

parallel. Therefore, the update operations for all PEs are completed in an extremely short

time. The number of cycles for the f-bit GREATER-THAN operation is

Cgreater�than = 9� f: (2.4)
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2.4 Data loading and retrieval processing

To complete the image processing, not only the CA processing described in Section 2.3

but also data loading and retrieval processing are required. For the loading, all pixel data

of input image are loaded into destination �elds of the correspondent CA cells of CAM2.

For the retrieval, the processed data are retrieved from result �elds of all CA cells.

If these types of processing are carried out one by one using word read/write (2.a), the

processing time becomes extremely long. For example, more than 5 hundred thousands

cycles are needed for CAM2 with 512 � 512 CA cells. Therefore they dominate the

performance of CAM2, especially for real-time applications, in which data loading and

retrieval must be performed every frame. To shorten the time, parallel loading and partial

retrieval methods are devised.

2.4.1 Parallel loading

The parallel loading is carried out in two phases: block data parallel write and inter-�eld

transfer. The parallel write is carried out in the following sequence:

1. Set search mask.

2. Set write mask.

3. Select b pixels in input image as a block data.

4. Write the block data into b words in parallel.

5. Repeat 3-4 until all pixels are selected.

In the sequence, each block data has f � b bits, where f is the bit width of pixel data.

Since the block data must be written into one word, b is determined according to b � e=f ,

where e is the bit width of one word. The parallel write is �nished in Wall
b

cycles, where

Wall is the number of total words.
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Figure 2.9 shows an example of the parallel write. In the example, b was assumed to

be 8. Since 8 words are addressed simultaneously by masking the lower read-only bits (3

bits), the parallel write in step 4 can be performed.

After the parallel write process is over, all pixel data are loaded. But most of the data

exist in a temporary �eld that is not the destination �eld. Therefore the data must be

transferred to the destination �eld. For this processing, the inter-�eld transfer process is

invoked. The inter-�eld transfer is carried out in the following sequence:

1. Set search mask.

2. Set write mask.

3. Maskable search to a certain bit of a certain pixel data in the temporary �eld.

4. Parallel writing to the correspondent bit position of the destination �eld.

5. Repeat 1-4 f times.

6. Repeat 1-5 until all pixel data in the temporary �eld are transferred to the destina-

tion �eld.

After the inter-�eld transfer process is over, all pixel data are loaded into the desti-

nation �eld. Figure 2.10 shows an example of the inter-�eld transfer. By masking the

higher read-only bits (except lower 3 bits), steps 1-4 can be performed every 8 words in

parallel.

The number of cycles needed for conventional method adopting sequential writing

Tload�conventional is

Tload�conventional = Wall: (2.5)

On the other hand, using the proposed parallel loading method, the number of cycles

Tload is
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Tload =
Wall

b
+ f � � � (b� 1) (2.6)

where � denotes the cycles for the maskable search and the parallel write and its value

is less than 5. When Wall is pixel-order (several hundred thousand), the value of the

second term is very low compared with that of the �rst term. So, our method is about b

times faster than the conventional method.

2.4.2 Partial retrieval

The partial retrieval is carried out in two phases: inter-word transfer and partial word

read. The inter-word transfer is carried out in the following sequence:

1. Select partial words (every b words).

2. Set search mask.

3. Set write mask.

4. Maskable search to a certain bit of a word except the partial words.

5. Upward/downward shift of hit 
ag to the position of the partial word.

6. Parallel writing to the correspondent bit position of the partial word.

7. Repeat 2-5 f times.

8. Repeat 2-6 until all result data are transferred to the partial words.

Through the inter-word transfer, all data in the result �eld are gathered into the

partial words. Figure 2.11 shows an example of the inter-�eld transfer. In the example, b

was assumed to be 8.

After the inter-word transfer process is over, the partial read process is invoked to

retrieve the result from CA cells. By reading only the partial words whose number is 1
b

of all words, all result data can be retrieved.
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The number of cycles needed for the conventional method adopting every word reading

Tretrieval�conventional is

Tretrieval�conventional =Wall: (2.7)

On the other hand, using the proposed partial retrieval method, the number of cycles

Tretrieval is

Tretrieval =
Wall

b
+ f � (� +

b(b� 1)

2
)� (b� 1): (2.8)

Since the values of the second term can also be ignored when Wall is pixel-order, our

method is about b times faster than the conventional method.

2.5 Evaluation

2.5.1 Possible CAM2 in a single board

For the purpose of building a compact and practical CA, CAM2 should be developed in

a single personal computer (PC) board. On a single PC board, up to sixteen CAM LSIs

can be embedded. Table 2.1 shows the estimation of possible CAM2 using 16 CAM LSIs.

Table 2.1: Possible CAM2 in a single PC board.

CMOS tech. Total CAM bit CA cell size ( = pixel size)

(1 CAM � chip #) for gray scale image for binary image

0.5 �m 256 k � 16 256 � 256 512 � 512

(1 word = 64 bits) (1 word = 16 bits)

deep 1 M � 16 512 � 512 1024 � 1024

sub-micron (1 word = 64 bits) (1 word = 16 bits)

A 336 k-bit CAM LSI has already been developed using 0.5-�m CMOS technology

[22]. According to process trends, a 256-kbit and a 1-Mbit dedicated CAM LSI for CAM2

can also be developed using 0.5-�m and deep sub-micron CMOS technology, respectively.

Using 0.5-�m CMOS technology, a 256 � 256 CAM2 can be realized by assigning 64 bits
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to one word. This bit length is su�cient for gray-scale image processing. If 16 bits, which

are su�cient for binary image processing, are assigned to one word, a 512 � 512 CAM2

can be achieved. Moreover, using deep sub-micron CMOS technology, the size of the cell

embedded in a single PC board is increased by a factor of four. Hence, using state-of-

the-art CMOS technology, it is feasible that a compact (a single PC board) and practical

(256 � 256 { 1024 � 1024 pixel-level image processing) CAM2 can be made.

Figure 2.12 shows the estimation of the number of signal I/O pins of the dedicated

CAM LSIs with various numbers of words (1 k - 256 k).
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Figure 2.12: Number of signal I/O pins.

Each CAM consists of CAM blocks with 1 k words. Since 64 bits are assigned to one
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word, the 4 k and 16 k CAM LSIs in Fig. 2.12 correspond to the 0.5-�m CAM with 256

k bits and the deep sub-micron CAM with 1 M bits in table 2.1, respectively.

The number of signal I/O pins of the 4 k and 16 k CAM LSIs is less than 150.

Considering today's LSI packaging technology, this number of pins is easy to implement.

Furthermore, although the increase rate of the Field Data I/O and Hit Data I/O pins

is proportional to the number of words, the increase rate of the Address I/O pins is

logarithmic and the number of Data I/O and Instruction Input pins is �xed. Therefore,

the increase rate of I/O pins is not so high. Larger CAM LSIs adopting future process

technology can also be implemented without causing I/O bottlenecks.

2.5.2 Processing performance evaluations

CA processing performance and data loading and retrieval processing performance are

discussed in this section. In the evaluation, the following CAM2 was assumed:

� 512 � 512 CA cells (16 CAM LSIs consisting of sixteen 1 k-word CAM blocks)

� m � n = 1024 (corresponding to the number of the words of one CAM block)

� 40-MHz system clock

For the evaluation, the functional hardware model of CAM2 based on Verilog-HDL [55]

was developed.

CA processing performance

The CA processing performance of CAM2 is shown in Fig. 2.13. In the evaluation, the

four-neighborhood CA processing model whose transition rule is based on mathematical

morphology [12] is used. The processing method of morphology will be explained in detail

in Chapter 5.

When the transfer bit width is small, the intra-CAM transfer becomes dominant.

Therefore, the bigger m is, the shorter the transfer cycle becomes, as shown in Fig. 2.13.

On the other hand, when the transfer bit width is big, the inter-CAM transfer becomes
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dominant. Therefore, the smaller m is, the longer the transfer cycle becomes. Thus,

proper m must be chosen according to the transfer bit width to achieve higher levels of

performance.

Upon choosing the proper m, 9 billion - 58 billion CA cell updates per second can be

achieved. In terms of image processing, this means that more than a thousand types of

CA-based image processing can be executed to the all 512 � 512 pixels at video rates (33

msec). Therefore, CAM2 has a large potentiality for real-time pixel-level image processing

that requires CA processing with various transition rules.

Data loading and retrieval performance

Figures 2.14 and 2.15 shows the performance of the conventional and proposed methods

for data loading and retrieval, respectively.

The processing time of the conventional methods is proportional to the number of

words. For example, the total processing time of CAM2 with 256 k words for both data

loading and retrieval is about 13 msec, which is too large considering that for real-time

applications the processing must be performed at video rates (33 msec).

On the other hand, when the number of words is small, the processing time of the

proposed methods is not so di�erent because of the overhead for the inter-�eld and inter-

word transfer. But when the number of words is big, our methods are about 8 times

faster than the conventional methods. Since the total processing time of CAM2 with 256

k words for both data loading and retrieval is about 1.6 msec, more than 30 msec can be

used for CA processing for real-time applications.

For the retrieval, a multiple-response resolution (MRR) [22] technique is also available.

Using MRR, only hit words can be retrieved. The number of cycles needed for the MRR

is 2s� 1, where s is the number of hit words. So, if the hit word ratio is less than 6.25%,

the processing time of MRR is shorter than that of the proposed method.
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2.6 Conclusion

In this chapter, I proposed a highly-parallel two-dimensional cellular automata architec-

ture called CAM2. CAM2 can attain pixel-order parallelism on a single board because it

is composed of a CAM, which makes it possible to embed enormous numbers of PEs,

corresponding to CA cells, onto one VLSI chip. Multiple-zigzag mapping of a CA cell

to a PE combined with dedicated CAM functions enables high-performance CA process-

ing. This mapping realizes high throughput CA-value transfer between neighbor CA cells,

even though a CAM has only a one-dimensional data transfer path. Parallel loading and

partial word retrieval techniques enable high throughput data transfer between CAM2 and

the outside image bu�er.

The performance evaluation results show that 256 k CA cells, which correspond to a

512 � 512 picture, can be processed by a CAM2 on a single board using deep sub-micron

process technology. The processing speed is more than 10 billion CA cell updates per

second under a four-neighbor condition. This means that more than a thousand CA-

based image processing operations can be done on a 512 � 512 pixel image at video rates

(33 msec).

CAM2 enables us to realize a board-sized two-dimensional CA that can process various

real-world images of several hundred thousand pixels at video rates. Thus, CAM2 will

widen the potentiality of a CA and make a signi�cant contribution to the development of

compact and high-performance information systems.
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Chapter 3

1-Mb CAM LSI and CAM2 board

3.1 Introduction

In this chapter, I describe a fully-parallel 1-Mb CAM LSI with dedicated functions for

CA processing and a proof-of-concept prototype CAM2 system (PC board) using this LSI

from the viewpoint of design and implementation. The design is based on conclusions

drawn from the architectural research presented in the preceding chapter. The LSI and

the board demonstrate that economically feasible compact, high-performance, and 
exible

CAM2 can be actually obtained with current technology.

There are two major problems as regards developing a large capacity CAM chip based

on state-of-the art LSI technology (0.25 �m process technology was used in this research).

These problems are 1) how to satisfy a number of physical constraints, such as wiring delay,

power consumption and packaging, and 2) how to design and con�rm the a�ectiveness

of the chip for rapid implementation. I propose a scheme that combines one-dimensional

(intra-block) and two-dimensional (inter-block) physical structures and comb data and

clock distribution to solve the former problem. For the latter problem, I devised both

manual and synthetic design strategies. I also propose new CAM functions for faster

multiple-bit logical and arithmetic operations and global data operations (these global

operations are beyond the CA concept but they are required to perform certain kinds

of image processing algorithms). Moreover, this chapter presents the results of various

estimations related to such factors as operating frequency, power consumption and chip

47
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size, based on fabricated chips.

I expect the full potential of CAM2 to be demonstrated when a faster and higher

capacity system is realized by streching current LSI and board technologies to or even

beyond their current limit. However, in reality an actual LSI and board must meet the

requirements of a reasonable design cost and time Thus, before starting LSI and board

design, I clari�ed the design constraints based on the available (1997) LSI and board

technologies. Below I have summarized the design constraints imposed on the design

process.

LSI chip

� 0.25 �m, �ve aluminum layer, full-custom CMOS fabrication process

� No more than 200 signal I/O pins per chip (allows use of regular pin pitch, 0.5 mm,

QFP package)

� Less than 2 watts of maximum power dissipation per chip (allows use of plastic mold

package that can be air-cooled)

� Less than 17.0 � 17.0 mm die size (allows use of 28 mm square QFP package)

PCI board

� 312 � 107 mm full-size PCI board (allows use of conventional PC as host computer)

� Less than 20 LSI components

� Less than 40 MHz system clock (allows easy development of control logic on FPGAs)

� Utilization of o�-the-shelf components, except for fabricated CAM LSI

Based on these constraints, I selected 1-Mb CAM LSI as a target. Since it has 16

k words, or processing elements (PEs), which can process 128 � 128 pixels in parallel,

a board-sized pixel-parallel image processing system can be implemented using several
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chips. Moreover, the targeted board consists of a highly-parallel PE array (which is a

two-dimensional 2 � 2 array of 1-Mb CAM LSIs), FPGAs and some memory. It can

process 256 � 256 pixels in parallel. In addition, PCI bus and NTSC video interfaces are

also embedded in this board. This means that a compact image-processing platform can

be built simply by connecting the board to a personal computer and a video camera.

This chapter is organized as follows. Section 3.2 presents methods for designing a

large capacity CAM. This is followed, in Section 3.3, by a description of CAM functions

for performing various image-understanding algorithms. After discussing the design and

veri�cation procedure for the rapid implementation of this chip in Section 3.4, I present

the speci�cations and processing performance of a fabricated chip and a prototype CAM2

board using the CAM LSIs in Sections 3.5 and 3.6, respectively.

3.2 CAM LSI design

3.2.1 Chip level design

Figure 3.1 is a block diagram of the CAM chip. In fabricating a high-capacity LSI with

pixel-order PEs, it is especially important to make full use of the CAM's memory-based

one-dimensional physical structure. However, connection networks that provide high-

throughput data transfer are also important. To satisfy both requirements, the LSI

uses a scheme combining a one-dimensional physical structure within blocks and a two-

dimensional physical structure between blocks. The LSI is thus divided into 32 CAM

blocks (U0-U15 and D0-D15), each with 512 words. Horizontally and vertically adjacent

CAM blocks are connected by an 8-bit Hbus and a 1-bit Vbus, respectively. Since both

the Hbus and Vbus are also distributed outside the chip in the same manner, a larger

CAM array can be obtained just by using several chips and connecting these buses to

each other in a mesh.

A chip controller (Chip CNT) controls the whole chip. It distributes various global

signal data, such as control signals (decoded instructions), data and address, to all CAM

blocks through a main bus. It also calculates a single-hit 
ag (only one word is selected
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or not selected) and a multiple-hit 
ag (plural words are selected or not selected) in a

search operation by compiling hit 
ags and output address data from all CAM blocks,

and outputs them through the HIT and MHIT port, respectively.

Since this CAM does not have a complete two-dimensional structure, it cannot handle

two-dimensional pixel data as it is. To assign two-dimensional pixels to it, a procedure

called multiple-zigzag mapping is devised as shown in Section 2.2.3. I did not employ

single-zigzag mapping because it takes too many cycles to transfer a value from one cell

to a vertically adjacent neighbor. By assigning the words in each CAM block to an array

of 6 � 64 pixels, one chip can logically handle 128 � 128 pixels in parallel, as shown in

Figure 3.2.

3.2.2 CAM block and cell circuit level design

Figure 3.3 shows a block diagram of the CAM block. Each CAM block consists of a cell

array block, a bit operation block, a word operation block and an interface block. The

cell array block is composed of 512 word � 64-bit-writable and 18-bit-read-only blocks

and an additional ROM block. Each cell in the writable block is composed of a latch

and an Exclusive NOR circuit with 12 transistors as shown in Figure 3.3. The writable

block can perform a maskable search, where search-result 
ag signals for each word are

generated by using the output signal of each Exclusive NOR circuit and are sent to hit-
ag

registers in the word operation block in a parallel fashion. It is performed by detecting

whether or not a precharged match line, ML, has discharged through the cell. Moreover,

a partial & parallel write can also be performed, where the data are written into speci�c

bit positions of multiple words. For a write operation, writing into all the cells connected

to the same bit line is prohibited if the signal PWj is set to a low level. Input capacitance

of some transfer gates, such as one connected by KDj line, changes depending on stored

data. So, the size of devices that drive such cells was carefully decided through worst

case simulation. During read and write operations, the electrical path to Vdd is cut o�

by Transistor 1. So, the bit line can be driven even if multiple cells are active at the same
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time. However, since the read operation to writable block is only allowed in single hit

case and contents of read-out data are not guaranteed in multi hit case, hit 
ags must be

checked before executing the read operation.

The read-only block is composed of ROM cells and a maskable address decoder, where

word-address data are stored. The read-only block can also perform a maskable search

for the �xed address data. For example, plural words can be address by masking them.

The complementary address data are stored in the additional ROM block. These ROM

data are used for generating single- and multiple-hit 
ags in word operation block. The

word operation block generates single- and multiple-hit 
ags using read-out data from the

ROM in the cell array block.

The ROM outputs "0" when no word-line is driven. When a single word-line is driven,

the stored data are output. If plural word-lines are driven, logical OR of stored data

of same bit-line is output. Therefore, by examining the output address-data and their

complement data, single- and multiple-hit 
ags can be generated. The 
ag generation

logic is expressed as,

HIT = ^i(Ai�Bi) (3.1)

and

MHIT = (_i(Ai) + _i(Bi)) ^ (:HIT ) (3.2)

where HIT is a single-hit 
ag, MHIT is a multiple-hit 
ag, ^ is AND, _ is OR, � is

exclusive-OR, : is negation, and Ai and Bi are word-address data and their complement

data, respectively. Since ROM is small and regular-structured, single- and multiple-hit


ags generation function can be implemented by extremely small amount of hardware.

In the word operation block, a hit-
ag register is also provided for each word. The

accumulation of the results of the bit-serial search for parallel processing is carried out by

this register.
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The bit operation block controls the bit position for the search and the parallel write.

It is composed of a 78-bit search mask register which speci�es search bit position and a

64-bit write mask register which speci�es write bit position. The interface block switches

the path from/to the Chip CNT and the path from/to vertically adjacent blocks. It has a

pipeline register (SREG) for data transfer between vertically adjacent blocks. An SREG

also acts as a one-bit counter for hit 
ags.

3.2.3 Data and clock distribution

Another important feature of the con�guration is global signal distribution, whereby data,

address and clock signals and such are distributed to all 32 blocks. With this scheme,

the wiring delay is the most serious problem because, for a 0.25-�m process, it increases

exponentially with wire length. Moreover, in implementing a large-capacity CAM, I have

to try to keep the peak power consumption down. To solve these problems, a comb-

distribution scheme is used, in which the data and clock are distributed in the same way,

as shown in Figure 3.4.
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Figure 3.4: Data and clock distribution scheme.

Bu�ers inserted every �ve or six fanouts reduce the wiring delay. The di�erent numbers

of bu�er stages produce an intentional skew, which lowers the peak power. But, since the

skews between horizontally and vertically adjacent blocks are both less than 0.5 ns, data
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can be transferred without causing timing problems.

3.3 Instruction design

3.3.1 Data transfer and update operations

CA processing is carried out by the iterative operations of CA-value transfer and update

as shown in Section 2.3. For data transfer, this CAM LSI supports upward/downward

hit-
ag shift and block read/write. For the shift, the hit-
ag registers have a bi-directional

shift mode. Since the hit-
ag registers between vertically adjacent blocks are connected

through a Vbus, the vertically adjacent blocks are considered to be one block in the shift

mode. With block read/write, optional 8-bit data can be transferred to an optional word

of the horizontally adjacent CAM block through an Hbus. An SREG in the interface block

is used as a pipeline register for the transfer. As shown in Figure 3.5, data is transferred

within blocks and between blocks.

Intra-block transfer deals with inner words and is carried out by the iteration of the

maskable search, the hit-
ag shift (1 and 8 bit shift to the left/right PE and upper/lower

PE, respectively), and the parallel write. Thus, hit-
ag registers can be utilized as a

one-bit data transfer path. On the other hand, the horizontal data transfer for boundary

words (the white circles in Figure 3.5) cannot be performed within a block. Inter-block

transfer deals with this and is carried out by means of the block read and write.

Two functions are absolutely essential for the update operation: a maskable OR search,

and partial and parallel writes. For the search, the results are accumulated in hit-
ag

registers by means of OR logic. For the writes, the data are written into speci�c bit

positions of multiple words for which the value of the hit-
ag register is 1. Through the

iteration of these two operations, SIMD-type update operations can be carried out in a

bit-serial, word-parallel manner.
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3.3.2 Multi-bit arithmetic operations

For multiple-bit operations, the mask position must be changed according to the processed

bit. I devised search or parallel write functions with an upward/downward mask shift to

execute them faster. These functions can be implemented just by making minimum

re�nements; only replacing the search and write mask registers to shiftable ones. They

do not a�ect CAM's high density structure at all.

Using these functions, the f-bit GREATER-THAN operation explained in Section 2.3

is executed in the following steps:

1. Set search mask.

2. Set write mask.

3. Maskable search for words whose Xi, Yi, F1, F2 is 0, 1, 1, 1.

4. Maskable OR search for words whose Xi, Yi, F1, F2 is 0, 1, 0, 0.

5. Parallel writing of 1, 0, 0 to Xi, F1, F2 of the hit words.

6. Maskable search for words whose Xi, Yi, F1, F2 is 1, 0, 1, 1.

7. Parallel writing of 1, 0, 1 to Xi, F1, F2 of the hit words.

8. Maskable search for words whose Xi, Yi, F1, F2 is 1, 0, 0, 0 and downward write

mask shift.

9. Parallel writing of 0, 0, 0 to Xi, F1, F2 of the hit words and downward search mask

shift.

Although the processing must be repeated from MSB (I = f) to LSB (I = 1), steps 1

and 2 are cut from the second iteration by using the proposed functions. The number of

cycles for the f-bit GREATER-THAN operation is

Cgreater�than = 7� f + 2: (3.3)
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So, the proposed functions bring the processing time for 8 bit GREATER-THAN

operation down to about 80% that of the conventional one explained in Section 2.3.

3.3.3 Global data operations

To cover various image-understanding algorithms, not only local operations but also global

data handling is indispensable. The global operation is beyond CA concept but is indis-

pensable to perform a certain kinds of algorithms. For example, the period of DTCNN

dynamics changes according to the geometric features of the input image. So, convergence

assessment is required to eliminate redundant transitions. Moreover, the pattern spec-

trum processing based on morphological operations, which will be explained in detail in

Section 5.4, is very useful for getting information on the global features of target objects.

The processing, however, requires area calculation, where pixel values stored in all PEs

must be summed up. This CAM also implemented dedicated functions to e�ciently carry

out such global data operations.

As examples of global data operations, convergence assessment and area calculation

are shown here. To assess convergence DTCNN de�ned by Equations (4.1) and (4.2),

which will be explained in Chapter 4, I must examine whether all y(k) values are equal

to y(k�1) or not. The assessment can be executed e�ciently by using hit 
ags (HIT and

MHIT). This CAM can perform it in only several cycles as shown in the following steps:

1. Set search mask.

2. Set write mask.

3. Maskable search for words whose y(k) is 1 and y(k � 1) is -1.

4. Maskable OR search for words whose y(k) is -1 and y(k � 1) is 1.

5. Convergence assessment. (If "HIT OR MHIT = 0," then convergence occurs. Oth-

erwise repeat new transition.)
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Figure 3.6 shows the processing steps for area calculation, where it is assumed that

a search of pixel values has been carried out and the results have been stored in hit-
ag

registers.
...
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Figure 3.6: Area calculation. Area of (a) each CAM block and (b) whole image.

First, each hit-
ag register is shifted repeatedly, and the carries are accumulated in

a SREG that functions as a counter. This yields the area of each CAM block. Next,

iterative data transfer through the V- and H-buses and addition yields the areas of all

the CAM blocks. This operation moves through the area data in a tree-like fashion, and

outputs the area of the whole image. The �rst step is carried out in parallel in each

block. Moreover, the number of iterations of the next step varies logarithmically with the

number of blocks. So, an area calculation takes only a short time.

3.3.4 Instruction set

The instruction set contains 32 instructions classi�ed into �ve modes: search, read, write,

data transfer and the rest, as shown in Table 3.1. Each operation takes just one cycle.

Two-dimensional pixel-parallel processing is carried out through a combination of these

instructions. It is upper compatible to the 336 k-bit CAM LSI [48] that we previously

developed. The 1-Mb CAM also has various advanced functions of the 336 k-bit CAM,
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Table 3.1: Instruction set of CAM LSI.

Mode Operations

Search � fully-parallel maskable search

(5 instructions) � maskable OR/AND search

� maskable search with write mask shift

Read � data read using address the same as RAM

(4 instructions) � hit-flag, true and complement address read

� address & data read at single hit

Write � data write using address the same as RAM

(7 instructions) � parallel write into matched words

� parallel write with search mask shift

Data Transfer � hit-flag shift up/down

(9 instructions) � block data read/write

� block data read/write with hit-flag shift

Clear & Set & Count � hit-flag/counter clear

(6 instructions) � search/write mask set

� hit-flag count

NOP

such as multiple-response-resolution (MRR), where only hit words can be retrieved one

by one. So, it can also e�ciently handle not only pixel-parallel processing but also various

image processing like Hough transform [24] { [27] and 3D-feature extraction [28].

3.4 Design and veri�cation procedure

Figure 3.7 shows the design and veri�cation procedure for this CAM. To speed up chip

development while achieving a high-density structure, both manual and synthetic design

strategies are employed. According to this, CAM cells and the word operation block,

which contain a large number of transistors that need to be tightly packed, are designed

with a macrocell entry tool. Since the other peripheral parts, like the controller and the

bit operation block, have fewer transistors but are very complicated, they are designed

by describing their behavior in a hardware description language. Mask data is obtained

by the repetition of layout and timing analysis to a chip netlist, which is a combination

of macrocell data and synthesized logic cell data. The comb data and clock distribution

described in Section 3.2 is implemented by simply designating the driver position.
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For veri�cation, I created an application development environment. It acts as a be-

havior simulator for the 1-Mb CAM and reports various simulation results, like output

image and processing speed, for various image processing algorithms; This environment

saves a great deal of veri�cation e�ort. It also automatically generates a test program for

test equipment. The application development environment will be explained in detail in

Section 4.4.

3.5 Fabricated LSI and its speci�cations

The CAM LSI was fabricated using 0.25-�m full-custom CMOS technology with �ve

aluminum layers. A micrograph of the chip is shown in Figure 3.8. One CAM cell

occupies 7.7 � 11.9 �m. A total of 15.5 million transistors have been integrated into a

16.1 � 17.0 mm chip. There are 32 physical CAM blocks composed of 512 words. Each

word functions as a processing element and handles one pixel. Since all of the peripheral

logic (e.g. controller) and global signal wiring (e.g. data and address) are gathered in a

center vertical part of the chip, the whole chip was e�ciently implemented without waste

area.

Figure 3.9 shows a Shmoo plot, which indicates that this LSI is capable of operating

at 56 MHz and 2.5 V. Table 3.2 of the chip speci�cations summarizes the design and

implementation results. All data are based on measured silicon.

At 40 MHz, the maximum power dissipation is 2.3 W. Since the power of the CAM

changes dramatically depending on the type of data being processed and the kinds of

instructions, the typical power dissipation should be lower than that. For example, for

edge detection it is 0.25 W. Table 3.3 shows the processing performance at 40 MHz.

Typical arithmetic and data transfer operations take from 0.025 to 5 �sec., which

is equivalent to a performance of 3 to 640 GOPS per chip. And typical pixel-parallel

operations, such as edge detection and hole �lling, take less than 20 �sec. This means

that more than a thousand pixel-parallel update operations can be done at video rates.

So, this LSI has great potential for real-time image processing by means of a combination
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Figure 3.9: Shmoo plot.

Table 3.2: Speci�cation of CAM LSI.

Configuration 512 words � (64 + 18) bits

� 32 blocks

Instruction set 32

Operation frequency 56 MHz (typical

Supply voltage 2.5 V (3.3V for I/O)

Power dissipation 2.3W at 40 MHz (maximum)

0.25W at 40 MHz (edge detection)

Number of pins 155

Package 208-pin P-QFP

LSI process technology 0.25 �m CMOS

(five aluminum layers)

Number of transistors 15.5 million

Chip size 16.1 � 17.0 mm
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Table 3.3: Processing performance at 40 MHz.

64 bit search 0.025 �s (640.0 GOPS per chip)

16 bit constant data set 0.13 �s (180.0 GOPS per chip)

4 bit addition 0.85 �s (18.8 GOPS per chip)

8 bit addition 1.7 �s (9.7 GOPS per chip)

16 bit addition 3.3 �s (4.9 GOPS per chip)

8 bit Intra-word 0.45 �s (35.6 GOPS per chip)

(PE) transfer

8 bit four-neighbor 4.7 �s (3.4 GOPS per chip)

Inter-word (PE) transfer

Edge detection for 8 bit 16.9 �s (morphology:

gray scale image dilation, rhombus)

+ 1.7 �s (subtraction)

Hole filling 14.1 �s per transition

for binary image (Discrete-time CNN)

of various pixel-parallel operations.

3.6 A proof-of-concept prototype CAM2 board

Based on the HiPIC concept, I designed and fabricated a proof-of-concept prototype CAM2

PC board using fabricated CAM LSIs. Figure 3.10 shows a block diagram of the board.

The board consists of a highly-parallel PE or CA cell array, FPGAs and some on-board

memory. The PE array is a two-dimensional array (2 � 2) of the 1-Mb CAM LSIs, and

can process 256 � 256 pixels in parallel. The CAM LSI is scalable, which means that a

larger image can be processed by increasing the number of chips. Furthermore, since this

CAM LSI has very high levels of performance, the frame rate can be boosted to over 30

frames per second by using a faster sampling camera.

Two XC4036XLs (FPGA1 and FPGA2) and one Xilinx XC4010 (FPGA3) are em-

ployed as FPGAs. XC4000XL series high-performance, high-capacity FPGAs [56] provide

the bene�ts of custom CMOS VLSI, while avoiding the initial cost, long development cy-
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cle, and inherent risk involved in using a conventional masked gate array. These FPGAs

combine architectural versatility, on-chip Select-RAM memory with edge-triggered and

dual-port modes, increased speed, abundant routing resources, and software to achieve

the fully automated implementation of complex, high-density, high-performance designs.

FPGA1 consists of a board controller and a video interface. The board controller

controls the whole board, dealing mainly with various control signals from a host PC.

The mapped registers on the controller can be directly accessed by the PC. The video

interface transfers input image data captured by a video camera or stored on the host

PC to the on-board memory. It also sends results of processed data stored in the on-

board memory to a video monitor or to the PC. FPGA2 consists of a CAM controller

and a memory interface. The CAM controller decodes microprograms stored in the on-

board memory and generates command sequences for the CA cell array. Since an FPGA

can easily generate various command sequences, it performs practical image processing

by combining various types of pixel-parallel processing. The memory interface controls

SRAM chips and arbitrates between various types of memory access from the CA cell

array, the host PC and the video interface. FPGA3 controls the boundary bus of the

CAM chips. Since it supplies optional data, the boundary values of the CA cell array can

be adaptively modi�ed.

The memory consists of eight asynchronous SRAMs and contains 8 M bits or 8 � 8

(= 64) � 128 k bits. Figure 3.11 shows a memory address map. The memory is divided

into three areas: image, program and data. To enable one memory port to be shared by

various types of memory access, I employed a double bu�er strategy, where two image

frame data with a size of 512 pixels � 512 pixels � 8 bits (gray scale) are stored in

the image area. According to this strategy, when image data is stored in or retrieved

from frame A, the CA cell array processes the image stored in frame B. By changing a

parameter, an optional 256 � 256 image for the CA cell array can be selected from an

image of 512 � 512. In contrast, the CA cell array handles frame A image data when

input or output images are stored in or retrieved from the frame B area.
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Figure 3.12 shows a control signal-
ow graph and the board controller timing chart.

When the system power is on, the board controller is set initially in the \idle" state. When

the start signal is sent from the host PC through the PCI bus, the state moves to \ready".

After receiving the �rst video synchronous signal (vsync), input image data from a video

camera starts to be transferred to the frame A area of the on-board memory. When the

second vsync is detected, input image data from the video camera are transferred to the

frame B area. Simultaneously, data stored in frame A is sent to the CAM array, where

various kinds of image processing are undertaken. When the third vsync is invoked, the

output image is sent to a video monitor or PC and input image data from the video

camera are transferred to the frame A area again. During this period, the CAM array

processes the image data on frame B. This processing continues until the start signal is

o�. This control technique allows one port of the on-board memory to be shared without

causing data destruction.

The board also has peripheral chips for PCI/IF and NTSC video encording/decoding.

PLX PCI9060 is used to handle the PCI bus. PCI9060 [57] is a PCI Version 2.1 compliant

bus master interface for adapter boards and embedded systems. The programmable local

bus of the chip can be con�gured so that it directly connects a wide variety of processors,

controllers and memory subsystems. It also provides two independent chaining DMA

channels with bidirectional FIFOs supporting zero wait state burst transfers between a

host and a local memory with a maximum data transfer rate of 132 MB/sec. By using

the burst transfer function, input images, processed images and data can be transferred

to or from a PC at video rates.

I used a Philips SAA7111 (video input processor) and an SAA7199 (digital video

encoder) for video decoding and encoding, respectively. The CMOS circuit SAA7111,

analog front-end and digital video decoder, is a highly integrated circuit for desktop

video applications. This decoder is based on the principle of line-locked clock decoding

and is able to decode the color of PAL and NTSC signals into CCIR-601 compatible color

component values. The SAA7199 encodes digital base-band color/video data into analogy
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Y, C and CVBS signals. Pixel clock and data are line-locked to the horizontal scanning

frequency of the video signal.

Since PCI bus and NTSC video interfaces are embedded in this board, a compact

image-processing platform can be built simply by connecting the board to a PC and a

video camera.

Figure 3.13 shows a photograph of the proof-of-concept prototype CAM2 board. To

minimize the noise e�ect, the analog circuits, video input processor and digital video

encoder are embedded in a daughter board on the reverse side.

3.7 Conclusion

In this chapter, I described a 1-Mb CAM LSI for a CAM2 CA cell. A scheme that

combines one-dimensional (intra-block) and two-dimensional (inter-block) physical chip

structures and comb data and clock distribution made it possible to develop a large

capacity CAM that can handle 128 � 128 pixel images in parallel. Moreover, advanced

functions, such as bi-directional hit-
ag shift, hit-
ag counting and search or parallel

writing with an upward/downward mask shift, made it possible to carry out various

types of two-dimensional pixel-parallel image processing including global data handling.

I fabricated a chip that is capable of operating at 56 MHz and 2.5 V using 0.25-�m full-

custom CMOS technology with �ve aluminum layers. A total of 15.5 million transistors

were integrated into a 16.1 � 17.0 mm chip. The typical power dissipation is 0.25 W, and

the chip exhibits a performance of 3 to 640 GOPS. This CAM LSI is expected to contribute

signi�cantly to the development of compact, high-performance image processing systems.

This chapter also described a prototype CAM2 board that employs the CAM LSIs.

The board consists of a highly-parallel PE array, FPGAs and some memory. The PE

array is a two-dimensional array (2 � 2) of 1-Mb CAM LSIs, and can handle a 256

� 256 image. The FPGA generates various command sequences to perform practical

image processing. In addition, PCI bus and NTSC video interfaces are also embedded

in this board. Therefore, a compact image-processing platform can be built simply by



3.7. CONCLUSION 73

1Mb CAM 

PCI I/F

NTSC Video I/F

FPGA

SRAM

Figure 3.13: Prototype CAM2 board with 256 � 256 CA cells.



74 CHAPTER 3. 1-MB CAM LSI AND CAM2 BOARD

connecting the board to a PC and a video camera. This prototype board demonstrates

that an economically feasible image processing platform can actually be obtained.



Chapter 4

Application: Discrete-time CNN

4.1 Introduction

The discrete-time cellular neural network (DTCNN) [9], [10], which originated from cellu-

lar neural networks (CNN) [58] { [60], is a computer paradigm that fuses arti�cial neural

networks with the concept of the cellular automaton (CA). Since a DTCNN's universality

is equivalent to that of a CNN [61], it can handle many CNN image processing applica-

tions. For example, they include not only local image processing, such as edge detection;

but also global image processing, such as hole �lling [62], connected component detec-

tion [63] and skeletonization [64]. Furthermore, since a DTCNN is de�ned by di�erence

equations instead of di�erential equations used in CNN de�nition, it is suitable for digital

processing. Thus, the DTCNN is considered to be a promising computer paradigm for

image processing. However, at present there are also no compact, practical computers

that can process real-world images of several hundred thousand pixels at video rates. So,

in spite of its great potential, DTCNNs are not being used for image processing outside

the laboratory.

Conventional DTCNN architectures fall into two categories: an analog-array archi-

tecture [65] and a digital-pipeline architecture [66]. The analog-array type is the most

natural one for DTCNN processing and provides very high level of performance. However,

it is extremely di�cult to develop a large capacity system that can process a practical

image of several hundred thousand pixels because of problems with reliability, accuracy,

75
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power, and production yield [67]. Therefore, only the analog-array CNN or DTCNN

systems with very few cells [65], [68] have been successfully developed. On the other

hand, the processing speed of the pipeline type is not high enough for many real-time

applications. Furthermore, practical image processing requires various gray-scale image

processing such as linear �ltering [7] and gray-scale mathematical morphology [11]. But

these architectures can not handle such processing. So, it is pretty clear that these con-

ventional architectures are not good solutions for a compact, practical DTCNN processing

platform.

In this chapter, I explain a DTCNN mapping and processing techniques based on

CAM2 in detail. For high-performance DTCNN processing, I devised the following four

mapping techniques: 1) 1-bit coding of y, 2) table look-up multiplication, 3) addition

of fewer bits and 4) convergence assessment using HFO. As for processing method, I

discuss not only single-layer DTCNN but also multiple-layer DTCNN to perform more

complex image processing. Furthermore, for rapid programming of DTCNN-based algo-

rithms, a programming language and an application development environment for CAM2

are presented. I also describe various performance evaluation results and image process-

ing examples using the environment to demonstrate the usefulness of CAM2 for DTCNN

processing.

This chapter is organized as follows. Section 4.2 provides the de�nition of DTCNN.

Then, the CAM2-based DTCNN processing method is explained in Section 4.3. After de-

scribing the application development environment in Section 4.4, performance evaluation

results and some examples of image processing combining DTCNN and other CA-based

algorithms are presented in Section 4.5.

4.2 De�nition of DTCNN

A DTCNN is de�ned by the recursive equations
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xc(k) =
X

d2Nr(c)

acdy
d(k) +

X
d2Nr(c)

bcdu
d(k) + ic (4.1)

and

yc(k) = f(xc(k � 1)) =
�

1 for xc(k � 1) � 0
�1 for xc(k � 1) < 0;

(4.2)

where xc denotes the state of the cell c, yc its output, and uc its input. The state of a

cell is calculated by convolutions of the inputs and outputs of neighboring cells within an

r-neighborhood Nr(c). The coe�cients for the inputs and outputs are given by acd and b
c
d,

respectively. The output is obtained by thresholding the state. The value of ic is constant

and is used for adjusting the threshold. Just by changing the templates, acd, b
c
d and ic,

various types of image processing can be performed.

Figure 4.1 shows the network structure of DTCNN. Applications for this network are

especially in image processing, where, despite of the local connections, global tasks can

be solved because of the feedback between the cells. The applications are separated into

two classes:

� Local image processing is achieved by way of a discrete convolution or correlation

with an input pattern. Here, local features of an image are extracted. Examples for

this type are edge detection, corner extraction and averaging �lter operations [59].

� Global image processing is performed by a wave-like propagation of the signals

traveling from cell to cell such as hole �lling [62], connected component detection

[63] and shadow creation [69].

The originally de�ned single layer architecture has been generalized in order to perform

more complex tasks, such as skeletonization [64] and motion detection [70]. For that

purpose, a multiple layer structure has been introduced, where also nonlinear and delay-

type templates [71] are applied.

A DTCNN can be considered to be a kind of two-dimensional CA whose transition

rules are a combination of the convolutions and the thresholding de�ned in Eqs. (4.1)
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Figure 4.1: Network structure of DTCNN.
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and (4.2). Therefore, it can be implemented with CAM2. However, as they are, these

equations contain very complex operations such as multiplication and take a long time to

process. So, I devised e�ective mapping methods to shorten the time.

4.3 DTCNN Processing using CAM2

4.3.1 Keys to DTCNN mapping

CA processing using CAM2 is carried out by iterative operations of CA-value transfer and

update as shown in Section 2.3. In order to carry out the above processing, the following

three functions are absolutely essential:

� Maskable OR search (4.a)

� Partial & parallel write (4.b)

� Up & down shift of hit-
ags (4.c)

For the search, the results are accumulated in hit-
ag registers by means of OR logic.

For the writes, the data are written into speci�c bit positions of multiple words for which

the value of the hit-
ag register is 1. For the shift, the hit 
ags are shifted to upper or

lower words. Through the iteration of these operations, CA values are transferred and

updated in a bit-serial, word-parallel manner.

The drawback of this scheme is that complex operations on many bits take a long time.

Moreover, the time needed to transfer a CA value is proportional to the bit length of the

value transferred. Thus, the keys to shortening the processing time are the transferring

of fewer bits of a CA value and the simpler updating of fewer bits.

4.3.2 DTCNN mapping

Considering the above keys to CAM2 processing, the following four mapping schemes are

adopted.
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1-bit coding of y

The �rst scheme is for CA-value transfer. Since CA-value transfer for y must be carried

out for every transition, it can be a time-consuming process. To shorten the time, 1-bit

coding of y is adopted. Since y only takes two values, 1 or �1 as shown in Eq. (4.2), this

scheme is appropriate. In the scheme, \y = 100 and \y = �100 are coded to \1" and \0",

respectively.
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Figure 4.2: Example of CA-value (y) transfer.
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Figure 4.2 shows an example of the CA-value transfer for DTCNN output. Here, y

values of each cell are transferred to CA cells on the right and below and are stored in

the neighbor cell �eld (Yleft and Yup). As this example shows, the CA-value transfer can

be carried out by using the iteration of maskable search (4.a), hit-
ag shift (4.c) , and

parallel write (4.b). Since the processing is carried out in a bit-serial manner, the number

of CA-value transfer cycles for the 1-bit coding becomes half that for 2-bit coding in

the 2's complement format, where \y = 100 and \y = �100 are coded to \01" and \11",

respectively. Furthermore, the multiple-zigzag mapping cuts down the length of the hit-


ag shift cycle that is the most time consuming. For example, the transfer cycle to a

horizontally adjacent cell is 1
q
compared with single-zigzag mapping.

Table look-up multiplication

To carry out Eq. (4.1), many multiplications of templates (acd or bcd) and the outputs

(yd) or inputs (ud) of neighbor cells are required. If a partial products addition method is

adopted for the multiplication, the processing time becomes extremely long. For example,

it takes more than a thousand cycles for 8-bit multiplication. Therefore, table look-up

multiplication is adopted. In this scheme, multiplication is carried out by the iteration of

maskable search (4.a) and parallel write (4.b). For example, acd�yd has only two possible

results because acd is a �xed value and yd takes 1 or �1. The iteration is done only twice

as shown in the following sequence:

1. Set search mask.

2. Set write mask.

3. Maskable search for cells whose yd is 1.

4. Parallel writing of acd to the hit cells.

5. Maskable search for cells whose yd is -1.

6. Parallel writing of �acd to the hit cells.
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Since CAM2 can perform these sequences in only several cycles, this scheme takes much

less time than one based on the addition of partial products.

Addition of fewer bits

Repeated additions are required for the convolutions in Eq. (4.1) and are also very time-

consuming. The n-bit addition (X + Y ) X) is executed in the following sequence:

1. Set search mask.

2. Set write mask.

3. Maskable search for cells whose fXi; Y i; Cg is f0; 0; 1g.

4. Parallel writing of f1; 0g to fXi; Cg of the hit cells.

5. Maskable search for cells whose fXi; Y i; Cg is f1; 0; 1g.

6. Parallel writing of f0; 1g to fXi; Cg of the hit cells.

7. Maskable search for cells whose fXi; Y i; Cg is f1; 1; 0g.

8. Parallel writing of f0; 1g to fXi; Cg of the hit cells.

9. Maskable search for cells whose fXi; Y i; Cg is f0; 1; 0g.

10. Parallel writing of f1; 0g to fXi;Cg of the hit cells.

11. Repeat 1-9 from LSB (i = 1) to MSB (i = n).

In the sequence, C �eld is used for storing carry. Figure 4.3 shows examples of the

maskable search (4.a) in step 3 and the parallel write (4.b) in step 4.

As this sequence shows, the processing time for the additions is in proportion to their

bit length (10 cycles per bit). Therefore, I limit the number of bits that must be added

to match the dynamic range of x in order to process them faster. For example, since the

dynamic range of x for processing hole �lling [62], whose templates are shown in Fig. 4.4,

is from �11 to 9, 5-bit addition is used to calculate the convolutions.
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Figure 4.4: DTCNN template for hole �lling.

Convergence assessment using HFO

The �nal mapping technique is for convergence assessment. The period of DTCNN dy-

namics changes according to the geometric features of the input image. So, convergence

assessment is required to eliminate redundant transitions. In the convergence assessment,

I must examine whether all cell values are equal to the correspondent or not. To execute

this e�ectively, I output a hit 
ag (HFO) that is the logical OR of all the hit-
ag registers.

The convergence assessment using the HFO is executed in the following sequence:

1. Set search mask.

2. Set write mask.

3. Maskable search for cells whose y(k) is 1 and y(k � 1) is �1.

4. Maskable search for cells whose y(k) is �1 and y(k � 1) is 1.

5. Convergence assessment (If \HFO = 0", then end DTCNN. Otherwise repeat new

transition.).

In the sequence, �rst I use maskable search (4.a) to check each cell and see if y(k)

equals y(k � 1). Then, I assess the convergence by examining the value of HFO. When

convergence occurs, the value is zero. CAM2 can perform these sequences in only several

cycles.
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4.3.3 DTCNN processing procedure

Through the combination of the four mapping techniques, DTCNN can be implemented

e�ciently with CAM2. Next, the DTCNN processing procedure employing these tech-

niques is explained. As an example of the processing, I use hole �lling with the template

shown in Fig. 4.4.

TempCAM
word

(CA cell)

Fd rNdFc Fi

Original cell
field

Neighbor cell 
field

Initial value 
field

Temporary 
field

fld1-fld2 fld3-fld6 fld7

Figure 4.5: CAM word con�guration for DTCNN processing.

The CA cell (= CAM word) con�guration of CAM2 for hole �lling is shown in Fig.

4.5. Each CAM word has original cell �elds Fc, neighbor cell �elds Fd, an initial value

�eld Fi, and a temporary �eld. The original cell �elds store xc and yc of the original cell.

The neighbor cell �elds store acd�yd of left, right, upper and lower cells. The initial value

�eld stores the initial value, which is �xed. The temporary �eld is used for storing carry,


ags, and so on.

The hole �lling is executed in the following sequence:

1. Load all pixel data of input image into Fc of correspondent CA cells of CAM2.

2. Calculate
P
bcdu

d(k) + ic(= 4� ud � 1 ) and store it to Fi.

3. Initialize yc (yc(0) = 1).

4. Transfer y of four neighbor cells (right, left, down and up cells) to correspondent

Fd.

5. Calculate xc according to Eq. (4.1) and store it to Fc.
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6. Update yc according to Eq. (4.2) and store it to Fc.

7. Repeat 4-6 until convergence occurs.

8. Read out yc of all CA cells.

The data transfer in step 4 can be e�ectively performed using the intra-CAM and

inter-CAM transfer described in Section 2.3. The convolutions in step 5, the thresholding

in step 6, and the convergence assessment in step 7 can be e�ectively executed using the

schemes mentioned in section 4.3.2.

4.3.4 Multiple-layer DTCNN processing

Not only a single-layer DTCNN but also a multiple-layer DTCNN with various templates

is required to perform more complex image processing [9]. The multiple-layer DTCNN

has three elementary modes for interconnecting multiple layers as shown in Fig. 4.6.

The cascade and feedback modes can be easily carried out by applying the templates

(TEM1-TEMx, TEM1-TEMy) one by one using a sequence similar to that mentioned in

section 4.3.3. On the other hand, since CAM2 can perform only one DTCNN processing

at a time, the parallel modes cannot be executed, as they are. So, I employ the following

processing procedure.

The CA cell (= CAM word) con�guration of CAM2 for the parallel mode is shown in

Fig. 4.7. Each CAM word has result �elds Fr in addition to processing �elds consisting

of original cell �elds Fc, neighbor cell �elds Fd, an initial value �eld Fi, and a temporary

�eld. The processing is executed in the following sequence:

1. Load all pixel data of input image into Fc of correspondent CA cells of CAM2.

2. Calculate the DTCNN for a template (TEM1) using processing �elds.

3. Store the result into a certain bit position of Fr.

4. Calculate the DTCNN for new templates (TEM2-TEMz) using processing �elds.



4.3. DTCNN PROCESSING USING CAM2 87

...

TEM1

TEMx

TEM2

Input

Output Output

Input

TEM1 TEM2 TEMz

LOGIC

...

...

...

a) Casecade c) Parallel

...

TEM1

TEMy

TEM2

Input

Output

b) Feedback

Figure 4.6: Various modes of multiple-layer DTCNN.
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5. Store the result into the other bit position of Fr.

6. Repeat 4-5 until all templates are calculated.

7. Perform a logic operation using all Fr data.

8. Read out the result for all CA cells.

In the prototype CAM2 system described in Section 3.6, 64 bits are assigned to one

word. Since from 30 to 40 bits are required to carry out various DTCNN processes, the

number of bits which can be assigned to Fr is about 30. Only one bit is required to store

one DTCNN result. Therefore, a parallel mode with about 30 templates can be executed.

4.4 Application development environment

To execute DTCNN processing using CAM2, control logic for generating the various com-

mand sequences described in section 4.3.3 and 4.3.4 must be mapped into the FPGA on

CAM2. For e�cient mapping, a programming language (CAM2 PL) and an application

development environment (CAM2 ADE) for CAM2 have been developed.

Figure 4.8 shows the feature of CAM2 ADE. CAM2 PL includes various arithmetic and

logic operations, such as addition and logical OR; various associative operations, such as

maskable search and parallel write; and some control-
ow statements, such as repeat and

while. It can easily handle a variety of CA algorithms.

CAM2 ADE consists of a compiler and a simulator. The compiler compiles CAM2 PL,

synthesizes the logic, and generates a netlist for the FPGA. The simulator reports sim-

ulation results, like processing speed, for various input images and test data. They are

used for debugging and evaluation. CAM2 ADE should signi�cantly speed up system de-

velopment

An example of the CAM2 PL for hole �lling is shown in Fig. 4.9. "m search" means

maskable search and "p write" means parallel write. "trans1 drul" means 1-bit 4-neighbor

data transfer and "add data5" means the addition of 5 bits. Through a combination of

these operations, the hole �lling can be described in only 34 statements.



4.4. APPLICATION DEVELOPMENT ENVIRONMENT 89

Programing 
language for CAM2

Logic
synthesizer

Simulator
Compiler

HDL

Simulation results
(Text / Image file)

Processing speed

Netlist for FPGA 
on CAM2

CA algorithm

Analyzer

CAM2_PL

CAM2_ADE

Figure 4.8: Feature of CAM2 ADE.
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;; DTCNN "hole-filling" for CAM^2
;;            written by CAM^2_PL

; Store binary image to fld1
(bin_data_in)

; Set outside cell data = 0
(set_0_load)

; Calc "SUM(bu)+i" and store to fld7
(m_search fld1 "01" "FF")
(p_write  fld7 "03" "FF")
(m_search fld1 "00" "FF")
(p_write  fld7 "1B" "FF")

; Set "y(0)" data to fld1
(field_id_set 1 "01")

; Repeat commands until HFO = 0
(while (HFO = 1) '(

   ; Copy data fld1 -> fld2
   (copy_8 fld1 fld2)
   ; 1-bit 4-neighbour data transfer
   (trans1_drul fld3 fld4 fld5 fld6)

   ; Calc original cell "ay(k)" data
   (m_search fld1 "01" "FF")
   (p_write  fld1 "02" "FF")
   (m_search fld1 "00" "FF")
   (p_write  fld1 "1E" "FF")
      
   ; Calc down cell "ay(k)" data
   (m_search fld3 "00" "FF")
   (p_write  fld3 "1F" "FF")
 

   ; Calc right cell "ay(k)" data
   (m_search fld4 "00" "FF")
   (p_write  fld4 "1F" "FF")
   ; Calc up cell "ay(k)" data
   (m_search fld5 "00" "FF")
   (p_write  fld5 "1F" "FF")
   ; Calc left cell "ay(k)" data
   (m_search fld6 "00" "FF")
   (p_write  fld6 "1F" "FF")
      
   ; Calc "x(k)" by summantion
   (add_data5 fld1 fld7)
   (add_data5 fld1 fld3)
   (add_data5 fld1 fld4)
   (add_data5 fld1 fld5)
   (add_data5 fld1 fld6)
      
   ; Update "y(k+1)" by thresholding
   (m_search fld1 "00" "10")
   (p_write  fld1 "01" "FF")
   (m_search fld1 "FF" "10")
   (p_write  fld1 "00" "FF")

   ; Convergence judgement
   (m_search fld1 fld2 "00" "01")
   (m_or_search fld1 fld2 "01" "00")
))
  
; Read binary image from fld1
(bin_data_out)

Figure 4.9: CAM2 PL example for hole �lling.
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4.5 Evaluation

4.5.1 Processing performance

Table 4.1 shows the processing performance of one transition for various DTCNN tem-

plates. As described in Section 2.5, the functional hardware model of CAM2 based on

Verilog-HDL [55] was developed. This data comes from the Verilog functional simulator.

In the evaluation, the system clock of CAM2 was assumed to be 40 MHz. Image size was

512 � 512 pixels.

Table 4.1: Processing time for one transition.

Template Processing time

(k ) k + 1)

hole filling 14.1 � sec

connected component detector 9.5 � sec

concentric contours 14.1 � sec

shadow creator 6.0 � sec

decreasing object 18.3 � sec

(8 neighbor)

The table show that, on average, CAM2 can perform one transition in about 12 �sec.

This means that more than a thousand DTCNN updates can be carried out on the whole

512 � 512 pixel image at video rates (33 msec). So, I think CAM2 has great potential

for real-time image processing. On the other hand, if the same types of processing are

executed on general sequential computers like PC or WS, about 1 second (on the Sparc

station 20) is required for one transition. Thus, CAM2 is extremely (a hundred thousands

times) faster than such computers.

4.5.2 Image processing

Some examples of image processing using CAM2 are shown in this section. These data

were calculated by the CAM2 ADE. Because of the simulation time limitation, a CAM2

with 128� 128 CA cells and a 128� 128 pixel image was used. Since CAM2 has scalability,
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a 512 � 512 pixel image can be processed in the same time if a CAM2 with 512 � 512 CA

cells is used.

Single-layer DTCNN (hole �ling)

Examples of the hole �lling for two di�erent input images, an 8 and an 8 in parentheses,

are shown in Figs. 4.10 and 4.11, respectively.

Input  image u

Output image y (k=0) Output image y (k=20)

Output image y (k=40) Output image y (k=56)

Figure 4.10: Hole �lling (8).
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Input  image u

Output image y (k=0) Output image y (k=20)

Output image y (k=40) Output image y (k=60)

Output image y (k=73)

Figure 4.11: Hole �lling (8 with parentheses).
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By applying the template in Fig. 4.4 to the input images, initial output images (k = 0)

are thinning gradually from the outside. And �nally hole �lled images are obtained.

The number of DTCNN updates necessary for completing the processing of the 8 is

56. On the other hand, 73 updates are required for the 8 in parentheses because the

parentheses prevent quick convergence. Since CAM2 can perform one transition for hole

�lling in 14.1 �sec (Table 4.1), the total processing times for the 8 and the 8 in parentheses

are 790 and 1030 �sec, respectively.

As these examples show, the period of DTCNN dynamics changes according to the

geometric features of the input image. Since conventional DTCNN machines do not have

a mechanism to assess the convergence, they must continue the processing until the worst-

case time. But CAM2 easily performs the convergence assessment as explained in section

4.3.3. So, redundant transitions can be eliminated.

Combination of a multiple-layer DTCNN and other CA-based algorithms

Another image processing example is shown in Fig. 4.12. This is based on the combination

of a multiple-layer DTCNN and other CA-based algorithms.

In the processing, sobel �ltering and thesholding operations are used to perform edge

detection, and the DTCNN is used for hole �lling and decreasing objects. Center point

detection is based on the skeletonization algorithm in [9]. The processing requires an-

other CA-based algorithm for checking connecting pixels. This algorithm is given by the

equations

xc =
8X

d=1

((�1)ud3u
(d+1)mod8
3 ) + i (4.3)

yc = f(xc) =
�

1 for xc � 0
�1 for xc < 0

(4.4)

where xc denotes the state of the cell c, yc its output, and uc its input. Furthermore, the

algorithm has a complex network combining the parallel and feedback modes. CAM2 can

also handle complex processing, such as center point detection.
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Figure 4.12: Image processing based on multiple-layer DTCNN.
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By applying this processing to a gray scale image (8 bit, 128 � 128), the number of

objects and the center point coordinates of the objects can be detected as shown in Fig.

4.12. It requires about 90 updates to all the CA cells. CAM2 can do it in just 2 msec.

To complete the image processing, not only the DTCNN processing but also image

data loading and retrieval processing are required. CAM2 can also handle such processing

e�ectively as show in Section 2.4. It takes about 0.1 msec for both the data loading and

retrieval of a 128 � 128 image. And it takes 1.6 msec for a 512 � 512 image. Thus, the

total processing time for the processing shown in Fig. 12 becomes less than 4 msec. This

indicates that processing can be handled at video rate (33 msec).

As this example shows, CAM2 has su�cient 
exibility and performance. It can perform

practical image processing that conventional machines cannot handle e�ciently.

4.6 Conclusion

This chapter described a DTCNN processing method based on a highly-parallel two-

dimensional cellular automata called CAM2 and presented some evaluation results. For

high-performance DTCNN processing, I devised the following four mapping techniques.

� 1-bit coding of y

� Table look-up multiplication

� Addition of fewer bits

� Convergence assessment using HFO

I also described multiple-layer DTCNN processing method to perform more complex

image processing.

Evaluation results show that, on average, CAM2 can perform one transition for various

DTCNN templates in about 12 �sec. This means that more than a thousand DTCNN

updates can be carried out on a whole 512 � 512 pixel image at video rates. CAM2

performs practical image processing using not only a single-layer DTCNN, but also a
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multiple-layer DTCNN with time-variant templates in combination with other CA-based

algorithms.

CAM2 enables us to realize a board-sized DTCNN universal machine that can pro-

cess various real-world images of several hundred thousand pixels at video rates. Thus

CAM2 will widen the potentiality of DTCNNs and make a signi�cant contribution to the

development of various real-time image processing systems.
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Chapter 5

Application: mathematical

morphology

5.1 Introduction

Mathematical morphology has evolved in Europe since the 1960s as a set-theoretic method

for image analysis, which uses concepts from algebra (set theory and complete lattices)

and geometry (translation, distance and convexity). First, the development of mathemat-

ical morphology was motivated mainly by problems in quantitative microscopy. Then, the

theoretical foundations of mathematical morphology, its main image operations (which

stem from Minkowski set operations) and their properties, and a wide range of its ap-

plications were introduced systematically by Matheron [72] and Serra [11]. The image

operations of mathematical morphology, or morphological �lters, are more suitable for

shape analysis than are linear �lters. They are predominantly used for the following

purposes:

� Image pre-processing (noise �ltering, shape simpli�cation).

� Enhancing object structures (skeletonizing, thinning, thickening, convex hull, object

marking).

� Quantitative descriptions of objects (area, perimeter, projections, Euler Poincar�e

characteristic).

99
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As a result of this pioneering work, mathematical morphology has become a powerful

tool with various practical applications [73] { [77] in the �eld of biomedical image pro-

cessing, metallography, geology, geography, remote sensing, astronomy, and automated

industrial inspection.

There are three prerequisites for the fuller realization of the potential of mathematical

morphology:

� Complex processing combining various morphological operations (including other

operations, such as discrete-time cellular neural networks [9], linear �ltering [7], and

area calculation),

� Processing with large and complex structuring elements, and

� High-speed (real-time) processing.

The achievement of these goals requires hardware with extremely high levels of perfor-

mance and high-frequency memory access. This also makes general-purpose sequential

machines such as personal computers (PC) and workstations (WS) totally unsuitable.

To address these problems, a number of special-purpose morphology architectures

have been proposed [78] { [82]. Most employ a pipeline technique in which a raster-scan

image is fed sequentially into a processing element (PE) array and the morphological

operations are carried out in parallel in each PE. Since the functions of the PEs and the

network structure are fully tuned to morphology, other operations crucial to practical

image processing cannot be performed. The �xed network structure also limits the size

and shape of the structuring elements. Furthermore, there are at most several dozen PEs.

This prevents the full use of the abundant parallelism (pixel order) of morphology, and, as

a result, the processing speed of the pipeline type is insu�ciently high for many real-time

applications. Against this backdrop, it is pretty clear that none of these conventional

architectures is suitable for building a morphology processing platform that satis�es the

above three prerequisites.
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In this chapter, I describe a morphology processing method that uses CAM2. I propose

new mapping methods designed to perform a wide variety of morphological operations

for not only binary but also gray-scale images. For morphology processing with large and

complex structuring elements, I devised a new transfer method, where the CA value can

be transferred a long distance and to optional-position CA cells. I also present global

operation procedures such as area calculation and null set assessment to obtain a pattern

spectrum, which is a promising morphology-based algorithm.

This chapter is organized as follows. Section 5.2 provides the de�nition of mathe-

matical morphology. This is followed, in Section 5.3, by a description of the morphol-

ogy processing method. Section 5.4 discusses pattern spectrum processing and Section

5.5 presents performance evaluation results and examples of image processing combining

morphology and other algorithms.

5.2 De�nition of morphology

5.2.1 Dilation and erosion

Morphology falls into three categories [12]: set processing (SP), function and set process-

ing (FSP), and function processing (FP). Each has two basic operations: dilation and

erosion. Dilation (�) and erosion (	) are de�ned by

SP

A�Bs = fa+ b : a 2 A; b 2 Bsg (5.1)

A	Bs = fa� b : a 2 A; b 2 Bsg (5.2)

FSP

(A�Bs)(x) = maxfA(y) : y 2 (Bs)xg (5.3)

(A	 Bs)(x) = minfA(y) : y 2 (Bs)xg (5.4)
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FP

(A�Bs)(x) = maxfA(y) +B(x� y) : y 2 Z2g (5.5)

(A	Bs)(x) = minfA(y)�B(x� y) : y 2 Z2g (5.6)

where A is the original image and B is the structuring element (SE).

As shown in the equations, dilation in SP employs the Minkowski addition of the

original image and the structuring element. For erosion, addition is replaced by subtrac-

tion. FSP and FP are used for gray-scale image processing, which employs maximum and

minimum operations.

5.2.2 Opening and closing

Erosion and dilation are not invertible transformations; if an image is eroded and then

dilated the original image is not re-obtained. Instead, the result is a simpli�ed and less

detailed version of the original image.

Erosion followed by dilation creates an important morphological transformation called

opening. The opening of an image A by the structuring element B is denoted by AB and

is de�ned as

AB = (A	Bs)�B: (5.7)

Dilation followed by erosion is called closing. The closing of an image A by the

structuring element B is denoted by AB and is de�ned as

AB = (A�Bs)	B: (5.8)

Opening and closing with an isotropic structuring element is used to eliminate speci�c

image details smaller than the structuring element; the global shape of the objects is not

distorted. Closing connects objects that are close to each other, �lls up small holes, and

smooths the object outline by �lling up narrow gulfs. Meanings of \near", \small" and
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\narrow" are related to the size and the shape of the structuring element. Examples of

opening and closing in SP are illustrated in Figure 5.1.

5.3 Morphology processing using CAM2

5.3.1 Features of CAM2 functions

CA processing using CAM2 is carried out by iterative operations of CA-value transfer

and update as shown in Section 2.3. In order to carry out them, CAM2 has not only

normal RAM operation, such as word reads and writes using addresses (5.a), but also the

following three functions:

� Maskable OR search (5.b)

� Partial & parallel write (5.c)

� Shift up/down mode of hit-
ags (5.d)

Although they are very simple, any type of CA operations can be carried out in a bit-serial,

word-parallel manner through the iteration of these operations.

Since CAM2 has only simple functions (thus allowing high-density implementation of

CAM2), the processing power of each CA cell (PE) is much lower than that of conventional

highly-parallel machines, which support a variety of multibit arithmetic functions. Be-

cause of this drawback, processing time becomes longer as the complexity and bit length

of operations increase. However, morphology requires only simple operations like logi-

cal OR and maximum, not complex ones like multiplication, which is commonly used in

image processing �lters. Furthermore, the dynamic range of morphological operations is

�xed; for example, 1 bit and 8 bits for SP (set processing) and FSP (function and set pro-

cessing), respectively. Therefore, the drawback mentioned above is not a serious obstacle

to morphological processing. On the contrary, the simplicity is an advantage because it

enables an enormous number of PEs to be built on a single CAM2 chip, which allows the

parallelism of morphology to be more fully exploited.
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Diration Erosion

Structuring 
element B
(5-by-5 circle)

Original image A

OpeningClosing

A    Bs

(A    B )    B)s

A    Bs

(A    B )    B)s

Figure 5.1: Examples of opening and closing (SP).
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5.3.2 Morphology mapping to CAM2

CAM2 is a two-dimensional cellular automaton de�ned as follows:

� A set of two-dimensional cells (PEs) each with its own value.

� All the cells update their value simultaneously in discrete steps by a transition rule

using the values of the original and the nearest neighbors.

For e�cient execution of morphological equations by CAM2, the following mapping

scheme was devised:

� Map each pixel of the original image to a CA cell (PE) of CAM2.

� The next value of the CA cells (the result of morphological operations) is determined

by set operations (logical OR/AND, maximum, minimum, etc) for the values of the

original and its neighboring cells. The cell location is de�ned by the structuring

element.

If this mapping is adopted, morphology can be considered to be CA, in which neighbors

are determined by the structuring element.

An example of dilation in FSP, in which the original image is gray scale and the

structuring element is binary, is shown in Fig. 5.2. The set operation is maximum. For

cell (7,7), the value in the pixel below is the maximum of the values of the original and

neighboring pixels. So, this value is selected as the dilation result. And for cell (7,3), all

the values are 0. So, the dilation result is also 0. Any type of morphological processing

can be done in the same way.

5.3.3 Morphology processing method

In this section, morphology processing using CAM2 is explained in detail. As an example,

dilation and erosion in FSP with a rhombic structuring element are used.

Figure 5.3 shows the CAMword con�guration for them. Each CAMword consists of an

original image �eld, a dilation/erosion image �eld, neighboring cell �elds, and a temporary
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Figure 5.2: Example of dilation (FSP).
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�eld. The original cell �eld (C) and the dilation/erosion image �eld (C+) store the value

of the original image and dilation/erosion image, respectively. The neighbor cell �elds

(NR, NL, NU and ND) store values in the right (R), left (L), up (U), and down (D) cells.

The temporary �eld is used for storing carry, 
ag, and so on.

TempCAM
word

(CA cell)

NL,R,U,DC

Original 
image field

Neighbor cell 
field

Temporary 
field

fld1 fld3-fld6fld2

C+

Dilation/erosion 
image field

Figure 5.3: CAM word con�guration for dilation/erosion (rhombus).

The dilation/erosion is executed in the following sequence:

1. Load all pixel data of the original gray-scale image into the C �eld of the corre-

sponding CA cells of CAM2.

2. Transfer the data of C to the C+ �eld of the same cell.

3. Transfer the data of C of four neighboring cells (right, left, upper and lower cells)

to the corresponding neighboring cell �elds.

4. Find out the maximum/minimum value among the data of C+ and N , and store it

into the C+ �eld.

5. Read out the dilation result from the C+ �eld.

The image data loading and retrieval processing in steps 1 and 5 can be done by the normal

RAM operations (5.a). Steps 2 and 3 are also e�ectively performed by the combination of

intra-CAM and inter-CAM transfer. Step 4 is executed by the iteration of \greater than"

or \less than" operations. Since \greater than" can be executed by the procedure shown

in Section 3.3, the processing method of \less than" operation is explained in detail here.
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Figure 5.4 shows the CAM word con�guration for the \P-bit less than" operation,

where the P bits of the X and Y �elds are compared, and the one that's smaller is stored

in the X �eld.

CAM
word

(CA cell)

XP Xi YiX1 YP Y1 F1 F2...... ... ...

P bit P bit 1 bit 1 bit

Figure 5.4: CAM word con�guration for P bit less than operation.

The \less than" operation is executed in the following sequence:

1. Set search mask.

2. Set write mask.

3. Maskable search for cells whose fXi; Y i; F1; F2g are f1; 0; 1; 1g.

4. Maskable OR search for cells whose fXi; Y i; F1; F2g are f1; 0; 0; 0g.

5. Parallel writing of f0; 0; 0g to fXi; F1; F2g of the hit cells.

6. Maskable search for cells whose fXi; Y i; F1; F2g are f0; 1; 1; 1g.

7. Parallel writing of f0; 0; 1g to fXi; F1; F2g of the hit cells.

8. Maskable search for cells whose fXi; Y i; F1; F2g are f0; 1; 0; 0g.

9. Parallel writing of f1; 0; 0g to fXi; F1; F2g of the hit cells.

10. Repeat 1-9 from MSB (i = P ) to LSB (i = 1).

In the sequence, F1 and F2 are used for 
ags and are stored in the temporary �eld. The

initial values of F1 and F2 are both 1. The condition fF1; F2g = f0; 0g indicates that

\Y < X 00 is determined and the condition fF1; F2g = f0; 1g indicates the opposite.
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As this example shows, the operation is carried out through the iteration of the mask-

able search and the parallel write. In the operation, the processing time is proportional

to the bit length. It's 9 cycles per bit for the greater-than operation. However, since all

the words are processed in parallel, the operations can be �nished in an extremely short

period of time.

5.3.4 Processing method for large and complex SEs

The size and shape of the structuring element are important factors in increasing the

potential use of morphology. For the processing, the CA value must be transferred a long

distance and to optional-position CA cells. To do this e�ciently, the following method is

devised.

The CAM word con�guration is shown in Fig. 5.5. A CAM word consists of the

original image �eld (C), processed image �eld (C+), and shift image �elds (SUD1, SUD2,

SRL). The separated cell value is transferred e�ciently and processed as follows:

1. Transfer the data of C of horizontal cells to the SRL �eld using intra-CAM transfer.

2. Execute the set operation to C+ and SRL if the correspondent structuring element

is de�ned.

3. Repeat steps 1 and 2 until the horizontally de�ned structuring element runs out.

4. Transfer the data of C of vertical cells to SUD1 (after that SUD1 or SUD2 are used

alternately) using inter-CAM transfer. This step is carried out at the same time as

step 1.

5. Repeat steps 1 to 4 using SUD1 or SUD2 instead of C until the vertically de�ned

structuring element runs out.

In the sequence, any shape of structuring element can be coped with by determining

whether the set operation is executed or not according to the structuring element.
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TempCAM
word

(CA cell)

C

Original 
image field

Shift image 
field

Temporary 
field

C+

Processed
image field

SUD1 SUD2 SRL

Figure 5.5: CAM word con�guration for large and complex SEs.

5.4 Pattern spectrum processing

The pattern spectrum processing [83] has been proposed as a morphology-based algorithm.

It is very useful for getting information on the global features of target objects, and some

applications, such as a gender recognition [84], have been devised.

Figure 5.6 shows an example of pattern spectrum processing, where n and B show

scales and structuring elements, respectively. A(X) shows the area of image X. As shown

in Fig. 5.6, to obtain a pattern spectrum, operations other than morphological ones are

required. They are summarized as follows:

� Pixel-by-pixel subtraction (XnB �X(n+1)B).

� Area calculation (number of black pixels in (XnB �X(n+1)B) image).

� Null set (�) assessment of X(n+1)B.

The following mapping schemes provide an e�cient way to do these.

5.4.1 Pixel-by-pixel subtraction

The �rst scheme is for pixel-by-pixel subtraction. Optional-bit-width subtraction can be

performed at the rate of about ten cycles per bit by combining the maskable search (5.b)

and parallel write (5.c), just as in the \greater than" operations described in Section

5.3.3. However, making use of the relationship of opening, XnB � X(n+1)B, shortens the

processing time still more. This can be done in a sequence that takes only two cycles:

1. Set search mask.
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Figure 5.6: Example of pattern spectrum processing.
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2. Maskable search for cells whose XnB is 1 and X(n+1)B is 0.

A positive result for a particular cell is stored in its hit-
ag register. Thus, the processing

time can be shortened signi�cantly by exploiting the features of target algorithms, even

though the performance of each cell (PE) of CAM2 is not very high, as mentioned before.

5.4.2 Area calculation

To calculate an area, the pixel values stored in all the cells must be summed up. Generally

speaking, however, highly-parallel machines based on local operations, including cellular

automata, cannot handle such global operation e�ciently. Indeed, normal CAM has only

one global network, which is the data I/O. So, to perform the calculation, data in each cell

(word) must be retrieved through the I/O one by one and summed up using an external

processor or some special circuits.

To address these problem, CAM2 has both counters in each CAM block (to count the

number of hit 
ags) and horizontal and vertical inter-CAM connection networks (for data

transfer between adjacent CAM blocks), as shown in Fig. 5.7. These functions can be

implemented just by changing the peripheral circuit of CAM, i. e., changing the memory

cell part is unnecessary. Moreover, the counter can be shared with the pipeline register for

the transfer. So, they can be implemented without degrading the high density of CAM.

The area calculation is done as follows:

1. Shift the hit-
ag registers of CA cells in which the pixel values are stored by means

of pixel-by-pixel subtraction and count the number of hit 
ags using the counters.

(This yields the area of each CAM block.)

2. Sum up the areas of all the CAM blocks through the iteration of the inter-block

transfer using the connection networks and addition using the maskable searches

(5.b) and the parallel writes (5.c). (This operation moves through the area data in

a tree-like fashion and stores the area of the whole image in a particular cell.)



5.4. PATTERN SPECTRUM PROCESSING 113

Search/Write mask reg.
...

Word  1
Word  2
Word  3
Word  4

Word  w
...

Counter

H
it 

fla
g 

re
gi

st
er

A
dd

re
ss

 d
ec

od
er

A,D VLHL

HFO VL

CAM block 

... ... ...

...

...

...

PE array

HL

VL

CAM
block

CAM
block

CAM
block

CAM
block

CAM
block

CAM
block

CAM
block

CAM
block

CAM
block

Figure 5.7: CAM structure for area calculation.

Step 1 of this sequence is carried out in parallel in each block. Moreover, the number

of iterations in step 2 varies logarithmically with the number of blocks. So, an area

calculation only takes a short time.

5.4.3 Null set assessment

The �nal mapping technique is for null set assessment. The scale when X(n+1)B becomes

a null set changes according to the geometric features of the input image. So, null set

assessment is required in order to eliminate redundant transitions. In the assessment, I

must examine whether X(n+1)B values stored in all the cells become \0" or not. To do

this e�ciently, I output a hit 
ag (HFO) that is the logical OR of all the hit-
ag registers

as shown in Fig. 5.7.

The assessment using the HFO is executed as follows:

1. Set search mask.

2. Maskable search for cells whose X(n+1)B is 1.
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3. Null set assessment (If \HFO = 0", then end the processing. Otherwise repeat the

processing for a new scale.).

When all X(n+1)B values become 0, the result of the maskable search for all the cells

becomes unhit. So, HFO becomes 0. A null set is assessed by examining the value of

HFO. Since CAM2 performs these sequences in only several cycles, the null set assessment

is also �nished in an extremely short period of time.

5.5 Evaluation

5.5.1 Processing performance

Morphology processing performance is evaluated in this section. I have already �nished

the design of CAM2 and have described it in Verilog HDL [55]. This data comes from the

Verilog functional simulator. In the evaluation, the system clock of CAM2 was assumed

to be 40 MHz. Image size was 512 � 512 pixels.

Table 5.1 shows the processing performance for one dilation of basic SEs shown in

Fig. 5.8. Erosion is performed in almost the same time. Through a combination of

these structuring elements, morphological operations with various-sized regular-shaped

structuring elements, such as 3� 3 square and 5� 5 circle, can be performed. As shown

in the table, CAM2 performs one dilation within 30 �sec. This means that more than a

thousand dilations can be carried out on the whole 512 � 512 pixel image at video rates

(33 msec).

Table 5.1: Processing time for basic SEs (�sec).

lin0 lin45 lin90 boxne rhombus

SP 7.0 8.3 1.3 4.4 7.4

FSP 12.3 20.5 11.8 15.0 18.0

FP 18.7 26.9 18.2 23.5 28.6

Figure 5.9 shows the processing performance for one dilation of large SEs. In the
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lin0 lin45 lin90 boxne rhombus

(      : origin)

Figure 5.8: Basic structuring elements.

evaluation, regular square structuring elements with size L2 were used. The �gure shows

that the execution time for one dilation is almost proportional to the size of the structuring

element. Therefore, an extremely large structuring element with a size of about 100 �

100 = 104 can be handled at video rates.

In view of these simulation results, I think CAM2 satis�es the three prerequisites

mentioned in Section 5.1, and, therefore, has great potential for morphology processing.

5.5.2 Image processing

Some examples of image processing based on morphology are shown in this section. These

data were calculated by CAM2 ADE based on the Verilog functional simulator. Although

these examples make it necessary to perform iterative morphological operations, the Ver-

ilog simulator takes an extremely long time to run. So, a CAM2 with 128 � 128 CA cells

and a 128 � 128 image were used here. Since CAM2 has scalability, a 512 � 512 image can

be processed in almost the same time (except for data loading and retrieval processing)

if a CAM2 with 512 � 512 CA cells is used.

As described in Section 4.4, CAM2 PL includes various arithmetic and logical op-

erations, such as addition and logical OR, and various associative operations, such as

maskable search and parallel write. To describe various morphological operations easily,

the following dedicated operations are added:
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� (dilation type se)

� (erosion type se)

where the morphology category (SP, FSP, and FP) and shape of the structuring element

(rhombus, square, etc) are given in \type" and \se", respectively. An example of CAM2 PL

is presented in Section 5.5.2.

Data loading and retrieval processing

The completion of image processing requires not only morphological processing but also

data loading and retrieval processing. For loading, all the pixel data of the input image

are loaded into the corresponding CA cells of CAM2. For retrieval, the processed data are

retrieved from the result �elds of all CA cells.

Using parallel loading and partial word retrieval techniques shown in Section 2.4,

CAM2 can also handle such processing e�ectively. It takes about 0.1 msec for both the

data loading and retrieval of a 128 � 128 image. The processing time needed for data

loading and retrieval processing lengthens with image size. However, since it only takes

1.6 msec even for a relatively large image (512 � 512), more than 30 msec is available

in which to perform morphology or other CA algorithms for real-time, or video rate (33

msec), applications.

Pattern spectrum

Figure 5.10 shows examples of pattern spectrum processing (SE: 5 � 5 circle) for two

di�erent images, in which one object has a crack and the other one does not. As shown

in Fig. 5.10, since the size and shape of the objects in image 1 are uniform, the spectrum

concentrates on scales 5 and 6. In contrast, since the object in image 2 has cracks, the

spectrum is scattered. Since the features of the spectra are quite di�erent, it is easy to

distinguish them.

Table 5.2 shows the processing time for the images. As shown in the table, the

processing time for opening increases with the scale because the size of the structuring
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Figure 5.10: Pattern spectrum for images with and without crack.
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element becomes larger as the scale increases. In contrast, the processing time for the

area calculation is constant, and is about 1
10

that of the conventional method using the

data I/O and the external processor. It takes only 0.6 �sec per scale for the rest of the

processing, such as pixel-by-pixel subtaction.

It takes about 1 msec for the whole pattern spectrum processing. When data loading

time is included, the total time becomes 1.1 msec and 1.8 msec for 128 � 128 and 512 �

512 images, respectively. Thus, a pattern spectrum can also be obtained at video rates.

Table 5.2: Pattern spectrum processing time.

Processing 1 scale (�sec) all scales (�sec)

opening 34.2 (n=0) 714.2

- 204.2 (n=5)

area calc. 33.8 202.8

rest 0.6 3.6

Skeletonization

Skeletonization is an important technique for analyzing images, as it can be used to

provide their medial axes. The morphological skeleton [12] SK(A) of image A (with

respect to structuring element B) is the �nite union of disjointed skeleton subsets Sn(A)

and is de�ned by

SK(A) =
[

0�n�N

Sn(A); (5.9)

where

Sn(A) = (A	 nBs)� (A	 nBs)B (5.10)

and n = 0; 1; 2; :::; N = maxfk : A	 kBs 6= �g.

Figure 5.11 shows an example of morphological skeletons. I used four di�erent 3-by-

3 structuring elements (lin0, lin90, rhombus and square). As shown in the �gure, the
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shape of the skeletons varies according to the structuring elements. It shows the ability

of morphological �lters to extract di�erent structuring information by using di�erent

structuring elements. The number of iterations N is from 11 to 17 and the procedure takes

from 0.04 to 0.27 msec. Thus, CAM2 can also obtain various morphological skeletons at

video rates.

Character extraction

Character extraction is one of the most useful image feature extraction techniques. One

promising application is license plate reading. However, ordinary outdoor images under a

wide variety of lighting conditions often include a strong shadow. Since a shadow forms

edges across the characters, it is very di�cult to extract characters from such images.

Morphology based thresholding [77] is a promising technique for solving this problem.

Figure 5.12 is an example of character extraction from a license plate image with

a strong shadow. The processing contains closing, subtraction and thresholding. As

explained in Sections 5.3 and 5.4, CAM2 can handle all of them e�ciently. It takes about

0.24 msec to perform the character extraction.

Multiple object tracking

Another example of image processing using CAM2 is shown in Fig. 5.13. By applying

various morphological operations to perform line erasure, edge detection, hole �lling and

noise reduction, a binary image of target objects can be obtained. The processing requires

15 morphological operations with various structuring elements. CAM2 can do it in just

200 �sec. As shown in Section 5.5.2, the data loading and retrieval times are 0.1 msec

and 1.6 msec for 128 � 128 and 512 � 512 images, respectively. The processing can be

�nished at video rates.

Figure 5.14 shows an example of CAM2 PL for the processing in Fig. 5.13. Here,

\copy 8" means the intra-word copy of 8 bits and \sub data8" means pixel-by-pixel sub-

traction of 8 bits. \Dilation" and \erosion" are the dedicated operations for describing

morphological operations with various structuring elements, as mentioned before. Using
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Original image

SE: lin90

SE: lin0

SE: rhombus

SE: square

N = 13
0.23 ms

N = 13
0.04 ms

N = 17
0.27 ms

N = 11
0.21 ms

Figure 5.11: Morphological skeleton with various structuring elements.
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Closing

Thresholding

Subtraction

Input image

Output image

SE: 15-by-15 
rhombus

0.24 ms

1.7 µs

0.45 µs

Figure 5.12: Character extraction for a license plate image with a strong shadow.
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Edge detection

48.3 µsec
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(SP: opening, 
9   7 circle)

(SP: closing,
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(Thresholding)

(FSP: dilation, 
3   3 rhombus
& pixel-by-pixel 
subtraction)

(FSP: closing, 
3   3 square)

Input image
Gray scale (8 bit)

Figure 5.13: Multiple object tracking (morphology).
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these operations, the processing is described in only 20 operations.

(gray_data_in) ; Store gray scale image data
(copy_8 1 2) ; Duplicate image data (fld1 -> fld2)
(dilation 'FSP 'square) ; Line erasure (closing 3-by-3)
(erosion 'FSP 'square)
(dilation 'FSP 'rhombus) ; Edge detection (dilation 3-by-3)
(sub_data8 1 2) ; Pixel-by-pixel subtraction (fld1 - fld2 -> fld1)
(thresh 16) ; Binarization (threshold value = 16)
(repeat 2 '( ; Hole filling (closing 5-by-5)
  (dilation 'SP 'rhombus)))
(repeat 2 '(
  (erosion 'SP 'rhombus)))
(erosion 'SP 'rhombus) ; Noise reduction & Separation
(erosion 'SP 'square) ; (opening 9-by-7)
(erosion 'SP 'rhombus)
(erosion 'SP 'lin0)
(dilation 'SP 'rhombus)
(dilation 'SP 'square)
(dilation 'SP 'rhombus)
(dilation 'SP 'lin0)
(bin_data_out) ; Read binary image data

;; CAM^2_PL sample program (multiple object detection using morphology)

Figure 5.14: CAM2 PL example for multiple object tracking.

As discussed above, CAM2 e�ciently performs not only morphology, but also other

CA-based algorithms. Using these algorithms, the center points of target objects and a

distance map for them can be obtained as shown in Fig. 5.15. By applying the processings

in Figs. 5.13 and 5.15 to the input image and by �nding the center points nearest those

in the previous frame, multiple object tracking can be performed.

These examples demonstrate that CAM2 is 
exible enough to perform practical image

processing employing a combination of morphology and other algorithms.
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Center point 
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Distance map 
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Figure 5.15: Multiple object tracking (other CA).

5.6 Conclusion

This chapter described a morphology processing method based on a highly-parallel two-

dimensional cellular automata called CAM2 and presented some evaluation results. New

mapping methods using maskable search, partial & parallel write and hit-
ag shift achieve

high-throughput complex morphology processing.

Evaluation results show that CAM2 performs one morphological operation for basic

structuring elements within 30 �sec. This means that more than a thousand operations

can be carried out on an entire 512 � 512 pixel image at video rates (33 msec). CAM2 can

also handle an extremely large and complex 100� 100 structuring element at video rates.

Furthermore, CAM2 can perform practical image processing, such as pattern spectrum,

skeletonization, character extraction and multiple object tracking, through a combination

of morphology and other algorithms. Thus, CAM2 will enable fuller realization of the

potential of morphology and make a signi�cant contribution to the development of real-

time image processing systems based on morphology and other algorithms.
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Chapter 6

Conclusion

6.1 Summary of results

This dissertation proposed a high-performance, compact, and 
exible two-dimensional

highly-parallel cellular automaton called CAM2 for real-time image-understanding pro-

cessing, which can be used to implement various image-understanding applications in

the �elds of industrial inspection, medical imaging, intelligent transportation systems,

robotics, multimedia, human interface, entertainment, image coding, and so forth. To

produce CAM2 and demonstrate its usefulness for image-understanding processing, this

dissertation covered three basic problem areas, namely computer architecture, LSI and

system design and implementation, and applications.

As regards computer architecture, the study focused on the following three architec-

tural considerations: CA mapping, CA processing, and data loading and retrieval process-

ing. Multiple-zigzag mapping enables two-dimensional CA cells to be mapped into CAM

words, even though physically a CAM has a one-dimensional structure. Dedicated CAM

functions enable high-performance CA processing. Furthermore, parallel loading and par-

tial word retrieval techniques enable high-throughput data transfer between CAM2 and

the outside image bu�er. The performance evaluation results show that 256 k CA cells,

which correspond to a 512 � 512 pixel picture, can be processed by a CAM2 on a single

board using deep sub-micron process technology. Moreover, the processing speed is more

than 10 billion CA cell updates per second. This means that more than a thousand CA-

127
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based image processing operations can be performed on a 512 � 512 pixel image at video

rates (33 msec). Thus, the �rst conclusion to be drawn from this research is that CAM2

will represent a major step toward the development of a compact and high-performance

two-dimensional cellular automaton.

In terms of design and implementation, I fabricated a fully-parallel 1-Mb CAM LSI

with dedicated functions for CA processing and a prototype CAM2 PC board using this

CAM chip. To satisfy the extremely severe design constraints of state-of-the-art process

technology (0.25 �m), this study involves not only VLSI circuit design, but also packaging

technology, circuit board fabrication technology, power and signal distribution techniques,

heat dissipation problems and design and veri�cation strategy. A CAM chip capable of

operating at 56 MHz and 2.5 V was fabricated using 0.25-�m full-custom CMOS technol-

ogy with �ve aluminum layers. A total of 15.5 million transistors were integrated into a

16.1 � 17.0 mm chip. The typical power dissipation was 0.25 W. The processing of various

update and data transfer operations was performed at 3-640 GOPS. Since the fabricated

CAM has 16 k words, or processing elements (PEs), which can process 128 � 128 pixels in

parallel, a board-sized pixel-parallel image processing system can be implemented using

several chips. Indeed, the prototype board has a two-dimensional array (2 � 2) of CAM

chips, and can handle a 256 � 256 pixel image. Since PCI bus and NTSC video interfaces

are also embedded in the board, a compact image-processing platform can be built simply

by connecting the board to a personal computer and a video camera. Thus, the second

conclusion of this research is that an economically feasible, compact, high-performance,

and 
exible CAM2 system can actually be obtained with the current technology.

As regards application, I focused on two fairly advanced CA-based computation paradigms,

namely discrete-time cellular neural network (DTCNN) and mathematical morphology.

DTCNN is a promising computer paradigm that fuses arti�cial neural networks with the

concept of the cellular automaton (CA). Mathematical morphology is an image transfor-

mation technique that locally modi�es geometric features through set operations. Both

are powerful tools with various applications in image processing �eld. Here, I studied
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mapping and processing method needed to perform various kinds of DTCNN and mor-

phology processing. Evaluation results show that, on average, CAM2 can perform one

transition for various DTCNN templates in about 12 �sec. CAM2 also can perform one

morphological operation for basic structuring elements within 30 �sec. These results mean

that more than a thousand operations can be carried out on an entire 512 � 512 pixel

image at video rates (33 msec). Furthermore, CAM2 can perform practical image pro-

cessing through a combination of DTCNN, morphology, and other algorithms. Thus, the

last conclusion is that CAM2 will enable fuller realization of the potential of DTCNN and

morphology and make a signi�cant contribution to the development of real-time image

processing systems based on DTCNN and morphology and a combination of them.

6.2 Future work

Although this dissertation has solved the problem of designing a highly-parallel computer

for real-time image-understanding processing that is extremely compact and that provides

very high levels of performance, much remains to be done in terms of further improving

the performance and expanding the use to various vision applications. Below, I mention

three aspects related to the re�nement of CAM2 that I believe to be important.

6.2.1 O�-chip high-speed memory

Since each cell of the current CAM2 system has a 64-bit storage capacity, the system can

store eight 8-bit gray-scale image planes simultaneously. Although this capacity is not

very large, CAM2 can handle a wide variety of vision applications as described in Chapters

4 and 5. However, there are certain applications, such as color-based applications or

applications that must store past frame data for a long period of time, that require a

large capacity for storing various temporary data. Although the capacity of CAM2 will

increase markedly with progress on LSI process technologies, occasionally it would be

insu�cient for the above applications. Moreover, considering the cost issue, the capacity

should be modi�ed adaptively according to the demand for applications.
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A promising solution to this problem involves using an o�-chip memory based on

high-speed electrical signaling technology [85], such as Rambus DRAM. Rambus DRAM

(RDRAM) [86] is a general purpose high-performance memory device suitable for use in

a broad range of applications including computer memory, graphics, video, and any other

application requiring high bandwidth and low latency. For example, the 128/144-Mbit

Direct Rambus DRAMs permit 600 to 800 MHz transfer rates while using conventional

system and board design technologies. They are capable of sustained data transfers at

1.25 ns per two bytes. A rough evaluation shows that the capacity of the current CAM2

system increases to 4 Gbit, which means 8000 image planes can be stored simultaneously,

simply by combining the commercially available Rambus DRAMs with maximum capacity

and CAM2. Moreover, a Rambus I/F module can be embedded in a CAM chip with

an acceptable increase in the required amount of hardware and number of I/O pins.

Furthermore, by executing o�-chip data transfer operations during the existing operation

cycles, such as the hit-
ag shift, on-chip data can be transferred to o�-chip memory

and vice versa without wasting very much processing time. Thus, the combination of

CAM2 and o�-chip high-speed memory is an easy but e�ective way to broader the vision

application range.

6.2.2 Multilevel vision architecture

CAM2 can handle most low-level and some intermediate-level vision tasks e�ciently as

shown in Chapters 4 and 5. However, for whole vision processing we must �nd a way of

dealing with the intermediate-level vision task that is beyond the scope of CAM2 and the

high-level vision task. With the HiPIC concept, these areas of processing are assumed

to be executed using a DSP or a host computer (microprocessor). However, since some

algorithms for real-time applications also require a huge amount of computational power,

an accelerator that covers both level tasks is also desired.

The most suitable architectures for these three levels are di�erent because the algo-

rithms for each level have di�erent network structures and degrees of parallelism. So,
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a multilevel architecture, such as image-understanding architecture (IUA) [87, 88], is a

good approach to solving the problem. IUA consists of three di�erent, tightly coupled

parallel processors: the content addressable array parallel processor (CAAPP) at the low

level, the intermediate communications associative processor (ICAP) at the intermediate

level, and the symbolic processing array (SPA) at the high level. Although IUA o�er an

ideal environment for vision applications, its drawback is the huge amount of hardware it

requires. So, to create a compact multilevel vision system that is widely used, we must

study architectural considerations based on LSI technology.

The architectural candidates that I consider promising for each level are as follows:

� Low level: CAM2 or CAM2 with o�-chip memory (Since the functions of CAAPP

and CAM2 are very similar, CAAPP can be easily replaced by CAM2. )

� Intermediate level: Versatile linear array (Although there are no actual LSI chips

that can be substituted for the ICAP, some architectural concepts, such as asyn-

chronous SIMD (ASIMD) [89], have been proposed. ASIMD is a kind of linear array

architecture but has some advanced functions such as a virtualization manager and

a data formatter, which o�er greater 
exibility for intermediate-level vision tasks.)

� High level: MIMD type DSP (Because of the huge progress made in LSI technology,

a general-purpose MIMD DSP, such as [90], has both high performance and su�cient


exibility for high-level vision tasks. It can be substituted for the SPA.)

All of the above can be implemented in one or a few chips, and the whole system

can be embedded as a multi-chip module or in a board. In the near future, they will be

able to be embedded in a chip. This will enable us to obtain a compact multilevel vision

system that covers all vision applications. This, in turn, will o�er greater computer vision

applicability.
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6.2.3 Humanoid computer with multi-modal man-machine in-

terface

Computers have been used for more than a half a century and are becoming indispensable

in various aspects of life. However, the interface (I/F) is still based on such legacy devices

as a keyboard and a mouse. Moreover, we still have to master special skills such as touch

typing to use computers e�ciently. So, a computer with a user-friendly I/F is highly

desirable.

A humanoid computer with a multi-modal man-machine I/F is an ultimate goal. A

computer that acted as if it were human might o�er the most natural means of interaction

between humans and machines. Speech and vision processing would play a particularly

important role when creating such a computer. Research is now under way on a natural

dialog system [91], [92] with a speech and vision I/F.

With the recent rapid progress in microprocessor technology, most speech recogni-

tion and synthesis algorithms can be performed by a general-purpose microprocessor in

real-time. However, it is still very di�cult to execute image recognition and synthesis pro-

cessing on a microprocessor. Indeed, the current PC consists of not only a microprocessor

but also a graphic accelerator chip to perform image or graphic synthesis e�ciently. In

contrast, there are no good compact platforms for handling image recognition. The mul-

tilevel vision architecture mentioned above would be a good solution. Figure 6.1 shows

the concept of a humanoid computer that covers both image recognition and synthesis

capability.
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Figure 6.1: Concept of a humanoid computer with multi-modal man-machine I/F.
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